Author's Latest Posts


System Bits: April 25


Graphene used as copy machine for cheaper semiconductor wafers MIT researchers reminded that in 2016, annual global semiconductor sales reached their highest-ever point, at $339 billion worldwide while in that same year the semiconductor industry spent about $7.2 billion worldwide on wafers. Now, a technique developed by MIT engineers may vastly reduce the overall cost of that wafer technology... » read more

Cloud Computing Chips Changing


An explosion in cloud services is making chip design for the server market more challenging, more diverse, and much more competitive. Unlike datacenter number crunching of the past, the cloud addresses a broad range of applications and data types. So while a server chip architecture may work well for one application, it may not be the optimal choice for another. And the more those tasks beco... » read more

System Bits: April 18


RISC-V errors Princeton University researchers have discovered a series of errors in the RISC-V instruction specification that now are leading to changes in the new system, which seeks to facilitate open-source design for computer chips. In testing a technique they created for analyzing computer memory use, the team found over 100 errors involving incorrect orderings in the storage and retr... » read more

Understanding Voltage Drop Mechanics


As a fundamental concept of electronic design, voltage drop ranks highly as one to understand well. I particularly appreciate when industry folks come up with creative ways to get the point across. Jerry Zhao, a product management director at Cadence and I were discussing how to best manage dynamic and static voltage drop, but I first asked him to explain the difference between the two. I p... » read more

Managing Voltage Drop At 10/7nm


Power integrity is becoming a bigger problem at 10/7nm because existing tools such as static analysis no longer are sufficient. Power integrity is a function of static and dynamic voltage drop in the power delivery network. And until recently, static analysis did an effective job in measuring the overall robustness of PDN connectivity. As such, it is a proxy for PDN strength. The problem is ... » read more

System Bits: April 11


Tiny transistors made from self-assembled carbon nanotubes While carbon nanotubes can be used to make very small electronic devices, they are difficult to handle. Now, researchers from the University of Groningen, the University of Wuppertal, and IBM Zurich, have developed a method to select semiconducting nanotubes from a solution, and make them self-assemble on a circuit of gold electrodes. ... » read more

2.5D, FO-WLP Issues Come Into Focus


Advanced packaging is beginning to take off after years of hype, spurred by 2.5D implementations in high-performance markets and fan-out wafer-level packaging for a wide array of applications. There are now more players viewing packaging as another frontier driving innovation. But perhaps a more telling sign is that large foundries in Taiwan have begun offering packaging services to customer... » read more

The Software Side Of Self-Driving


Just as the overall system complexity is causing ripples through the automotive supply chain so too is managing the system complexity, with software in particular. With so much new technology, and so many new ideas to keep track of, it would seem a huge undertaking by the automotive OEMs. In the midst of making decisions about the usual incremental improvements, the system architecture decis... » read more

Self-Driving Cars Rattle Supply Chain


Automotive compute workloads are consolidating as carmakers push toward autonomous vehicles, but the changes necessary to make this all work are causing huge disruptions in an industry that has fine-tuned its supply chain over more than a century. Consolidation is essential for a variety of reasons, including efficiency of the computations, complexity management, and lower deployment costs. ... » read more

System Bits: April 4


Nanodevices for extreme environments in space, on earth Researchers at the Stanford Extreme Environment Microsystems Laboratory (XLab) are on a mission to conquer conditions such as those found on Venus: a hot surface pelted with sulfuric acid rains, 480 degrees C, an atmosphere that would fry today‚Äôs electronics. By developing heat-, corrosion- and radiation-resistant electronics, the team ... » read more

← Older posts Newer posts →