Early Chip-Package-System Thermal Analysis


Next-generation automotive, HPC and networking applications are pushing the requirements of thermal integrity and reliability, as they need to operate in extreme conditions for extended periods of time. FinFET designs have high dynamic power density, and power directly impacts the thermal signature of the chip. Thermal degradation typically occurs over an extended period of chip operation. ... » read more

Multiphysics Reliability Signoff For Next-Gen Auto Electronics Systems


The automotive industry is in the midst of a sea change. Growing market needs for electrification, connectivity on the go, advanced driver assistance systems, and ultimately the goal of autonomous driving, are creating newer requirements and greater challenges. A chassis on four wheels is now fitted with cameras, radar and other sensors, which will be the eyes of the driverless car, as well as ... » read more

Energy Requirements And Challenges For IoT Autonomous Intelligence At The Edge


Recently, on a cold February night at San Jose State University, I attended the fourth episode of the talk series IR4: The Cognitive Era. IR4 talks focus on the fourth Industrial Revolution that is currently taking place and how cognitive science affects education, careers, and life. This latest part involved four esteemed experts on cloud and edge computing and the ramifications of energy effi... » read more

Full-Chip Power Integrity And Reliability Signoff


As designs increase in complexity to cater to the insatiable need for more compute power — which is being driven by different AI applications ranging from data centers to self-driving cars—designers are constantly faced with the challenge of meeting the elusive power, performance and area (PPA) targets. PPA over-design has repercussions resulting in increased product cost as well as pote... » read more

Improving Automotive Reliability


Semiconductor reliability requirements are rapidly evolving. New applications such as ADAS/self-driving cars and drones are pushing the limits for system reliability. A mobile phone that overheats in your pocket is annoying. In automobiles, it's a much different story. Overheating can impact the operation of backup sensors, which alert the driver that a pedestrian or obstacle is behind them.... » read more

Addressing Thermal Reliability In Next-Gen FinFET Designs


The next generation of chips on the 10/7nm finFET processes will be able to cram more devices into same area while also boosting performance, but there's a price to pay for that. The 3D fin structures trap heat, so the the temperature rises on the device and there is no way to dissipate that heat. This combination of higher current density, higher performance and higher temperature has a det... » read more

Design For Silicon Success At 7nm


Next-generation automotive, mobile and high-performance computing applications demand the use of 7nm SoCs to deliver greater functionality and higher performance at much lower power. According to Gartner, when compared to 16nm/14nm technology, 7nm offers 35% speed improvement, 65% less power, and 3.3X density improvement. Hence, despite a whopping cost of $271M — per Gartner's estimate — to... » read more

Creating Reliable SoCs For Safe ADAS Applications


Every major automaker is in the process of bringing out autonomous vehicles with ADAS (advanced driver assistance systems). In addition to processors and embedded software, ADAS requires a variety of sensors – ultrasonic, camera, RADAR (radio detection and ranging), LIDAR (light detection and ranging), GPS and IR (infrared) – that are used to recognize signs, people, animals, other vehicles... » read more

Confidence In 7nm Designs Requires Multi-Variable, Multi-Scenario Analysis


As designs move toward 7-nanometer (nm) process nodes, engineering and production cost dramatically increases and the stake in getting the design right the first time becomes significantly higher than ever before. You are faced with the question, “how confident are you in your design analysis coverage?” Tighter noise margin, increasing power density, faster switching current and greater ... » read more

7nm Design Success Necessitates A Multi-Physics Approach


Whether you are designing an energy efficient mobile device, or an ADAS platform with stringent reliability requirements, or a high performance enterprise networking system, chips fabricated on advanced technologies such as 7-nanometer (nm) process and 2.5/3D or wafer level packaging can provide several advantages. Designs using these technologies consume less power while delivering higher thro... » read more

← Older posts