Manufacturing Bits: May 22


Exotic water The Deutsches Elektronen-Synchrotron (DESY) organization, Uppsala University and SLAC have turned a large X-ray laser into the world’s fastest water heater. Using an X-ray free-electron laser from the SLAC National Accelerator Laboratory, researchers have heated water from room temperature to 100,000 degrees Celsius in less than a tenth of a picosecond or a millionth of a mil... » read more

System Bits: May 22


AI disruptions and benefits in the workplace According to Stanford University researchers, artificial intelligence offers both promise and peril as it revolutionizes the workplace, the economy and personal lives. Visiting scholar James Timbie of the Hoover Institution, who studies artificial intelligence and other technologies, said that in the workplace of tomorrow, many routine jobs now p... » read more

Power/Performance Bits: May 22


Sensing without battery power Engineers at the National University of Singapore developed an IoT-focused sensor chip that can continue operating when its battery runs out of energy. The chip, BATLESS, uses a power management technique that allows it to self-start and continue to function under dim light without any battery assistance. The chip can operate in two different modes: minimum-ene... » read more

Manufacturing Bits: May 15


Space metrology NASA is developing a mini-electron probe based on an array of carbon nanotube dots. The probe would be used in an instrument, which would analyze the chemical properties of rocks and soils on asteroids, moons and planets. For years, NASA has been working with carbon nanotubes in various applications. Carbon nanotubes are hard, cylindrical nanostructures with good electrical ... » read more

System Bits: May 15


Navigating with GPS and sensors According to MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers, navigating roads less traveled in self-driving cars is a difficult task mainly because self-driving cars are usually only tested in major cities where countless hours have been spent meticulously labeling the exact 3D positions of lanes, curbs, off-ramps, and stop signs... » read more

Power/Performance Bits: May 15


Aluminum battery materials Scientists from ETH Zurich and Empa identified two new materials that could boost the development of aluminum batteries, a potential low cost, materially abundant option for temporary storage of renewable energy. The first is a corrosion-resistant material for the conductive parts of the battery; the second is a novel material for the battery's positive pole that ... » read more

Manufacturing Bits: May 8


Electrolyte transistors Delft University of Technology, the Centre National de la Recherche Scientifique (CNRS) and NTT have developed a nanotransistor technology that will make it easier to measure the concentration of different electrolytes in the body. Electrolytes involve nutrients and chemicals in the body. They perform important functions and a disruption of the electrolyte balance is... » read more

Power/Performance Bits: May 8


Cobalt-free cathodes Researchers at the University of California, Berkeley, built lithium-ion battery cathodes without cobalt that can store 50% more energy than traditional cobalt-containing cathodes. Currently, lithium-ion battery cathodes use layered structures, which cobalt is necessary to maintain. When lithium ions move from the cathode to anode during charging, a lot of space is left... » read more

System Bits: May 8


Unlocking the brain Stanford University researchers recently reminded that for years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and now AI is starting to return the favor: while not explicitly designed to do so, certain AI systems seem to mimic our brains’ inner workings more closely than previously thought. [caption id="attach... » read more

Manufacturing Bits: May 1


Adaptive materials The U.S. Army Research Laboratory (ARL) and the University of Maryland have developed a technique to make adaptive materials. Using ultraviolet light, researchers have devised a way that causes a composite material to become stiffer and stronger on-demand. This in turn could enable a variety of new capabilities for the U.S. military, such as rotorcraft design. In this... » read more

← Older posts