Overcoming The Limits Of Scaling


Semiconductor Engineering sat down to discuss the increasing reliance on architectural choices for improvements in power, performance and area, with [getperson id="11425" comment=" Sundari Mitra"], CEO of [getentity id="22535" comment="NetSpeed Systems"]; Charlie Janac, chairman and CEO of [getentity id="22674" e_name="Arteris"]; [getperson id="11032" comment="Simon Davidmann"] CEO of [getentit... » read more

What’s Missing In Advanced Packaging


Even though Moore's Law is running out of steam, there is still a need to increase functional density. Increasingly, this is being done with heterogeneous integration at the package or module level. This is proving harder than it looks. At this point there are no standardized methodologies, and tools often are retrofitted versions of existing tools that don't take into account the challenges... » read more

BEOL Barricades Ahead


Coventor recently assembled an expert panel at IEDM 2016, to discuss changes to BEOL process technology that would be needed to continue dimensional scaling to 7 nm and lower. Among the questions posed to panelists: What is BEOL? Where does it begin and end? Are there fundamental limits to interconnect processes? How much longer can we continue to use current interconnect processes and te... » read more

7nm Design Success Starts With Multi-Domain Multi-Physics Analysis


Companies can benefit from advancements in the latest semiconductor process technology by delivering smaller, faster and lower power products, especially for those servicing mobile, high performance computing and automotive ADAS applications. By using 7nm processes, design teams are able to add a lot more functionality onto a single chip and lower the power consumption by scaling operating volt... » read more

Lower Power Plus Better Performance


The tradeoff between power and performance is becoming less about one versus the other, and more about a dual benefit, as new computing and chip architectures begin rolling out. Neural networking, which is one of the hot buttons for any system that relies on lots of distributed sensors, is essential to get a true picture of what is happening around a car moving down the highway at 65 miles ... » read more

Why Do You Need Chip-Package-System Co-Design And Co-Analysis?


Whether it is the need for sustainable energy, or driving performance while keeping power at bay, or enabling safe and reliable operation of any electronic system, containment of electronic noise — power and signal noise is critical to all of the above. Other factors that impact safe and reliable operation are electromigration (EM), electromagnetic interference (EMI) and mechanical stress ena... » read more

Packaging Wars Begin


The advanced IC-packaging market is turning into a high-stakes competitive battleground, as vendors ramp up the next wave of [getkc id="82" kc_name="2.5D"]/[getkc id="42" kc_name="3D"] technologies, high-density fan-out packages and others. At one time, the outsourced semiconductor assembly and test ([getkc id="83" comment="OSAT"]) vendors dominated and handled the chip-packaging requirement... » read more

Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. ... » read more

Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. ... » read more

Manufacturing Bits: April 12


Ink FETs The University of Pennsylvania has developed a new way to make chips by using nanocrystal inks. The devices, dubbed nanocrystal field-effect transistors (FETs), could be used one day to develop chips for flexible and wearable applications In the lab, researchers devised spherical nanoscale particles. These particles, which have electrical characteristics, were dispersed in a liquid... » read more

← Older posts