Quantum Effects At 7/5nm And Beyond


Quantum effects are becoming more pronounced at the most advanced nodes, causing unusual and sometimes unexpected changes in how electronic devices and signals behave. Quantum effects typically occur well behind the curtain for most of the chip industry, baked into a set of design rules developed from foundry data that most companies never see. This explains why foundries and manufacturing e... » read more

The Case For Chiplets


Discussion about chiplets is growing as the cost of developing chips at 10/7nm and beyond passes well beyond the capabilities of many chipmakers. Estimates for developing 5nm chips (the equivalent 3nm for TSMC and Samsung) are well into the hundreds of millions of dollars just for the NRE costs alone. Masks costs will be in the double-digit millions of dollars even with EUV. And that's assum... » read more

Tech Talk: 7/5/3nm Signoff


Anand Raman, director of technical marketing at Helic, explains what's needed to improve confidence in designs at the most advanced process nodes. https://youtu.be/2O2pbMJSta4 » read more

DSA Re-Enters Litho Picture


By Mark LaPedus and Ed Sperling Directed self-assembly (DSA) is moving back onto the patterning radar screen amid ongoing challenges in lithography. Intel continues to have a keen interest in [gettech id="31046" t_name="DSA"], while other chipmakers are taking another hard look at the technology, according to multiple industry sources. DSA isn't like a traditional [getkc id="80" kc_name="... » read more

Why All Nodes Won’t Work


A flood of new nodes, half-nodes and every number in between is creating confusion among chipmakers. While most say it's good to have choices, it's not clear which or how many of those choices are actually good. At issue is which [getkc id="43" kc_name="IP"] will be available for those nodes, how that IP will differ from other nodes in terms of power, performance, area and sensitivity to a v... » read more

Tech Talk: 5/3nm Parasitics


Ralph Iverson, principal R&D engineer at Synopsys, talks about parasitic extraction at 5/3nm and what to expect with new materials and gate structures such as gate-all-around FETs and vertical nanowire FETs. https://youtu.be/24C6byQBkuI » read more

Transistor Options Beyond 3nm


Despite a slowdown in chip scaling amid soaring costs, the industry continues to search for a new transistor type 5 to 10 years out—particularly for the 2nm and 1nm nodes. Specifically, the industry is pinpointing and narrowing down the transistor options for the next major nodes after 3nm. Those two nodes, called 2.5nm and 1.5nm, are slated to appear in 2027 and 2030, respectively, accord... » read more

Tech Talk: Applying Machine Learning


Norman Chang, chief technologist at ANSYS, talks about real applications of machine learning for mechanical, fluid dynamics and chip-package-system design. https://youtu.be/MqYX0wbwSfE » read more

Nodes Vs. Nodelets


Foundries are flooding the market with new nodes and different process options at existing nodes, spreading confusion and creating a variety of challenges for chipmakers. There are full-node processes, such as 10nm and 7nm, with 5nm and 3nm in R&D. But there also is an increasing number of half-nodes or "node-lets" being introduced, including 12nm, 11nm, 8nm, 6nm and 4nm. Node-lets ar... » read more

The Future Of FinFETs


The number of questions about finFETs is increasing—particularly, how long can they continue to be used before some version of gate-all-around FET is required to replace them. This discussion is confusing in many respects. For one thing, a 7nm finFET for TSMC or Samsung is not the same as a 7nm finFET for Intel or GlobalFoundries. There are a bunch of other nodes being proposed, as well, i... » read more

← Older posts