Transferring Skills Getting Harder


Rising complexity in developing chips at advanced nodes, and an almost perpetual barrage of new engineering challenges at each new node, are making it more difficult for everyone involved to maintain consistent skill levels across a growing number of interrelated technologies. The result is that engineers are being forced to specialize, but when they work with other engineers with different ... » read more

Uncertainty Grows For 5nm, 3nm


As several chipmakers ramp up their 10nm finFET processes, with 7nm just around the corner, R&D has begun for 5nm and beyond. In fact, some are already moving full speed ahead in the arena. [getentity id="22586" comment="TSMC"] recently announced plans to build a new fab in Taiwan at a cost of $15.7 billion. The proposed fab is targeted to manufacture TSMC’s 5nm and 3nm processes, whic... » read more

Etching Technology Advances


Let’s get really, really small. That directive from leading semiconductor companies and their customers is forcing the whole semiconductor supply chain to come up with new ways to design and manufacture ever-shrinking dimensions for chips. The current push is to 10nm and 7nm, but R&D into 5nm and 3nm is already underway. To put this in perspective, there are roughly two silicon atom... » read more

Inside Advanced Patterning


Prabu Raja, group vice president and general manager for the Patterning and Packaging Group at [getentity id="22817" e_name="Applied Materials"], sat down with Semiconductor Engineering to discuss the trends in patterning, selective processes and other topics. Raja is also a fellow at Applied Materials. What follows are excerpts of that conversion. SE: From your standpoint, what are the big... » read more

Measuring Atoms And Beyond


David Seiler, chief of the Engineering Physics Division within the Physical Measurement Laboratory at the National Institute of Standards and Technology (NIST), sat down with Semiconductor Engineering to discuss the current and future directions of metrology. NIST, a physical science laboratory, is part of the U.S. Department of Commerce. What follows are excerpts of that conversation. SE: W... » read more

450mm And Other Emergency Measures


Talk about boosting wafer sizes from 300mm to 450mm has been creeping back into presentations and discussions at conferences over the past couple months. Earlier this year, discussions focused on panel-level packaging. These are basically similar approaches to the same problem, which is that wafers need to be larger to reap efficiencies out of device scaling. Whether either of these approach... » read more

How Small Will Transistors Go?


By Mark LaPedus & Ed Sperling There is nearly universal agreement that Moore’s Law is slowing down. But whether it will truly end, or just become too expensive and less relevant—and what will supplant device scaling—are the subject of some far-reaching research and much discussion. Semiconductor Engineering sat down with each of the leaders of three top research houses—[getent... » read more

One-On-One: Dave Hemker


Dave Hemker, CTO at [getentity id="22820" comment="Lam Research"], sat down with Semiconductor Engineering to look at some of the key issues on the process and manufacturing side, and some of the key developments that will reshape the semiconductor industry in the future. What follows are excerpts of that conversation. SE: One of the big discussion topics these days is [getkc id="208" commen... » read more

Where Is Next-Gen Lithography?


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Greg McIntyre, director of the Advanced Patterning Department at Imec; Harry Levinson, senior fellow and senior director of technology research at GlobalFoundries; Uday Mitra, vice president and head of strategy and marketing for the Etch Business Unit and Patterning Module at Applied Materials; Naoya Haya... » read more

Design Techniques Are Helping To Keep Moore’s Law Alive Longer


By Francky Catthoor Moore's Law means that electronic products can constantly be produced more cheaply, faster and more economically. Down to 45nm, this was due mainly to the technology that made it possible to reduce the size of transistors. Now things are becoming more difficult. But even if we are not able to achieve these gains through the further scaling of transistors as the result ... » read more

← Older posts