AI: The Next Big Thing


The next big thing isn't actually a thing. It's a set of finely tuned statistical models. But developing, optimizing and utilizing those models, which collectively fit under the umbrella of artificial intelligence, will require some of the most advanced semiconductors ever developed. The demand for artificial intelligence is almost ubiquitous. As with all "next big things," it is a horizonta... » read more

Tech Talk: On-Chip Variation


Raymond Nijssen, vice president of systems engineering at Achronix, discusses on-chip and process variation at 7nm and 5nm, the role of embedded FPGAs, and how to reduce margin and pessimistic designs. https://youtu.be/LQnw_3H9soQ » read more

Deconstructing Deep Learning


I discuss AI and deep learning a lot these days. The discussion usually comes back to “what is a deep learning chip?” These devices are basically hardware implementations of neural networks. While neural nets have been around for a while, what’s new is the performance advanced semiconductor technology brings to the party. Applications that function in real time are now possible. But wh... » read more

eSilicon Builds ASIC Business On Leading-Edge Chip Design


How advanced application specific integrated circuits (ASIC) chip design and manufacturing for leading-edge applications such as networking and artificial intelligence can be successfully outsourced. The company which has capabilities in 2.5D packaging, high-bandwidth memories (HBM), and silicon IP for fast memories and SerDes designs. The company has many leading system companies as custome... » read more

In Case You Missed It


We recently held two very successful seminars in Tokyo and Shanghai. Samsung Memory presented their HBM2 solutions, Samsung Foundry talked about their advanced 14nm FinFET solutions, ASE Group reviewed their advanced 2.5D packaging solutions, eSilicon presented our ASIC and 2.5D design/implementation and IP solutions, Rambus detailed their high-performance SerDes solutions and Northwest Logic p... » read more

The Future Of AI Is In Materials


I had the pleasure of hosting an eye-opening presentation and Q&A with Dr. Jeff Welser of IBM at a recent Applied Materials technical event in San Francisco. Dr. Welser is Vice President and Director of IBM Research's Almaden lab in San Jose. He made the case that the future of hardware is AI. At Applied Materials we believe that advanced materials engineering holds the keys to unlocking... » read more

Preparing For Bigger Changes Ahead


The semiconductor industry has undergone a fundamental shift over the past year, and it's one that will redefine chipmaking over the next decade or more. While the focus is still on building the fastest, lowest-power devices, whether that's by shrinking features or packaging them into blazing-fast 2.5D or fan-out configurations, these devices are being customized for specific use cases much ... » read more

What’s Next?


We just concluded two very successful seminars in Tokyo and Shanghai. Samsung Memory presented their HBM2 solutions, Samsung Foundry talked about their advanced 14nm FinFET solutions, ASE Group reviewed their advanced 2.5D packaging solutions, eSilicon presented our ASIC and 2.5D design/implementation and IP solutions, Rambus detailed their high-performance SerDes solutions and Northwest Logic ... » read more

Lowering The Barriers To Entry For ASICs


The future of IoT and its rate of scalability depends upon increased functionality in the smallest form factors. Arm knows that OEMs are increasingly turning to custom SoCs/ASICs for a wealth of benefits: differentiation, cost savings, improved reliability, and smaller products. So, at Arm, we wanted to better understand the perceived risks involved for OEMs – what makes custom SoCs a task... » read more

Automotive Foundries


The race to win a piece of the automotive electronics business has now reached the foundry level, and right now it's not clear exactly how this is going to work. This is uncharted territory for everyone. The build-out of electronics for assisted and autonomous driving is brand new. For existing cars, most of the chips being used are off-the-shelf microcontrollers, commodity MEMS sensors, and... » read more

← Older posts