Power/Performance Bits: Mar. 20

Proton battery prototype A team at RMIT University built a prototype rechargeable proton battery combining hydrogen fuel cells and battery-based electrical power that has the potential, with further development, to store more energy than currently-available lithium ion batteries. The working prototype proton battery uses an activated carbon electrode for solid-state storage of hydrogen with... » read more

Power/Performance Bits: Mar. 6

Neural network chip Neural networks are both slow and consume a lot of power. This made researchers at MIT examine the important aspects of the nodes within a neural network and to see how each part of the computation could be improved. The outcome was a dedicated chip that increases the speed of neural-network computations by three to seven times over its predecessors, while reducing power c... » read more

Power/Performance Bits: Feb. 13

Silicon spintronics Engineers at the University of California, Riverside, developed new methods to detect signals from spintronic components made of low-cost metals and silicon. Spintronic devices generate little heat, use relatively minuscule amounts of electricity, and would require no energy to maintain data in memory. However, previously developed spintronic devices depend on complex struc... » read more

Power/Performance Bits: Feb. 6

Recycling cathodes Nanoengineers at the University of California San Diego developed an energy-efficient recycling process that restores used cathodes from spent lithium ion batteries. The process involves harvesting the degraded cathode particles from a used battery and then boiling and heat treating them. In new batteries built with the cathodes, charge storage capacity, charging time and ba... » read more

Power/Performance Bits: Jan. 30

Wavy display architecture Researchers at KAUST developed a new transistor architecture for flexible ultrahigh resolution devices aimed at boosting the performance of the display circuitry. Flat-panel displays use thin-film transistors, acting as switches, to control the electric current that activates individual pixels consisting of LEDs or liquid crystals. A higher field-effect mobility of... » read more

Power/Performance Bits: Jan. 23

Atomristors for thin memory Engineers at The University of Texas at Austin and Peking University developed a thin memory storage device with dense memory capacity. Dubbed "atomristors," the device enables 3-D integration of nanoscale memory with nanoscale transistors on the same chip. "For a long time, the consensus was that it wasn't possible to make memory devices from materials that were... » read more

Power/Performance Bits: Jan. 16

Lithium-iron-oxide battery Scientists at Northwestern University and Argonne National Laboratory developed a rechargeable lithium-iron-oxide battery that can cycle more lithium ions than its common lithium-cobalt-oxide counterpart, leading to a much higher capacity. For their battery, the team not only replaced cobalt with iron, but forced oxygen to participate in the reaction process as we... » read more

Beacons Beckon Ubiquity In IoT Era

In the early 1900s, radio beacons were created with the aim of tracking ships and planes. Prior to this innovation, pilots and ships’ captains usually relied on celestial navigation, and anyone who wanted to know their location was in the dark. A century later, engineers took the concept and devised Bluetooth Low Energy-enabled beacons, a vast use never envisaged by their 20th cent... » read more

Power/Performance Bits: Nov. 7

Speeding up MRAM Researchers at UC Berkeley and UC Riverside developed an ultrafast method for electrically controlling magnetism in certain metals, which could lead to increased performance for magnetic RAM. While the nonvolatility of MRAM is a boon, speeding up the writing of a single bit of information to less than 10 nanoseconds has been a challenge. “The development of a non-volatile... » read more

Power/Performance Bits: Oct. 31

Battery material supplies Researchers at MIT, the University of California at Berkeley, and the Rochester Institute of Technology conducted an analysis of whether there are enough raw materials to support increased lithium-ion battery production, expected to grow significantly due to electric vehicles and grid-connected battery systems. They conclude that while in the near future there shou... » read more

← Older posts