Multi-Patterning Issues At 7nm, 5nm


Continuing to rely on 193nm immersion lithography with multiple patterning is becoming much more difficult at 7nm and 5nm. With the help of various resolution enhancement techniques, optical lithography using a deep ultraviolet excimer laser has been the workhorse patterning technology in the fab since the early 1980s. It is so closely tied with the continuation of [getkc id="74" comment="Mo... » read more

How Many Nanometers?


What’s the difference between a 10nm and a 7nm chip? That should be a straightforward question. Math, after all, is the only pure science. But as it turns out, the answer is hardly science—even if it is all about numbers. Put in perspective, at 65nm, companies defined the process node by the half pitch of the first metal layer. At 40/45nm, with the cost and difficulty of developing n... » read more

Back-End-of-Line (BEOL) Virtual Patterning With SEMulator3D


Interconnect requirements for the 22nm technology node and beyond, driven by shrinking FEOL geometry, push the limits of unit process tools for BEOL as well as FEOL. Lengthy and costly in-fab experiments are required to ensure that the integrated BEOL process meets local performance and cross-wafer uniformity requirements. Virtual fabrication experiments conducted with SEMulator3D can reduce th... » read more

Interconnect Challenges Rising


Chipmakers are ramping up their 14nm finFET processes, with 10nm and 7nm slated to ship possibly later this year or next. At 10nm and beyond, IC vendors are determined to scale the two main parts of the [getkc id="185" kc_name="finFET"] structure—the transistor and interconnects. Generally, transistor scaling will remain challenging at advanced nodes. And on top of that, the interconnects ... » read more

Back-End-of-Line (BEOL) Metallization


Physical Vapor Deposition (PVD) for Back-End-of-Line (BEOL) metallization is being pushed to the limits at the 16-nanometer (nm) technology node and beyond. Extending PVD for metal liner and barrier seed deposition is forcing the process into a narrow window that must be characterized prior to manufacturing introduction. Furthermore, understanding the liner dependency on the trench and via etch... » read more

7nm Fab Challenges


Leading-edge foundry vendors have made the challenging transition from traditional planar processes into the finFET transistor era. The first [getkc id="185" kc_name="finFETs"] were based on the 22nm node, and now the industry is ramping up 16nm/14nm technologies. Going forward, the question is how far the finFET can be scaled. In fact, 10nm finFETs from Samsung are expected to ramp by ye... » read more

Insider’s Guide To Fab Technology


Semiconductor Engineering sat down to discuss fab technology with Matt Paggi, vice president of advanced technology development at GlobalFoundries. What follows are excerpts of that conversation. SE: What’s driving demand for semiconductors today? Paggi: You are aware of what the worldwide semiconductor revenue growth is this year. There are peaks and valleys in the worldwide semiconduc... » read more

Inside Process Technology


Semiconductor Engineering sat down to discuss the foundry business, memory, process technology, lithography and other topics with David Fried, chief technology officer at [getentity id="22210" e_name="Coventor"], a supplier of predictive modeling tools. What follows are excerpts of that conversation. SE: Chipmakers are ramping up 16nm/14nm finFETs today, with 10nm and 7nm finFETs just around... » read more

Pain Points At 7nm


Early work has begun on 7nm. Process technology has progressed to the point where IP and tools are being qualified. There is still a long way to go. But as companies begin engaging with foundries on this process node—[getentity id="22586" comment="TSMC"] is talking publicly about it, but [getentity id="22846" e_name="Intel"], [getentity id="22819" comment="GlobalFoundries"] and [getentity ... » read more

Interconnect Challenges Grow


It’s becoming apparent that traditional chip scaling is slowing down. The 16nm/14nm logic node took longer than expected to unfold. And the 10nm node and beyond could suffer the same fate. So what’s the main cause? It’s hard to pinpoint the problem, although many blame the issues on lithography. But what could eventually hold up the scaling train, and undo Moore’s Law, is arguably t... » read more

← Older posts