Tech Talk: Embedded Memories


Dave Eggleston, vice president of embedded memory at GlobalFoundries, talks about the pros and cons of new types of embedded memory, including which work best for certain applications and with various advanced packaging options. [youtube vid=7D9zoA9FFIw] » read more

Power/Performance Bits: Oct. 11


Getting to 1nm Researchers at the Lawrence Berkeley National Laboratory, UC Berkeley, University of Texas at Dallas, and Stanford University created a transistor with a working 1nm gate from carbon nanotubes and molybdenum disulfide (MoS2). "The semiconductor industry has long assumed that any gate below 5 nanometers wouldn't work, so anything below that was not even considered," said fir... » read more

Power/Performance Bits: Sept. 6


Carbon nanotube transistors outperform silicon University of Wisconsin-Madison materials engineers created carbon nanotube transistors that outperform silicon transistors, improving the current 1.9 times. The new transistors are particularly promising for wireless communications technologies that require a lot of current flowing across a relatively small area. "This achievement has been a... » read more

Power/Performance Bits: Aug. 23


Connecting implanted devices University of Washington researchers developed a new method for communication between devices such as brain implants, contact lenses, credit cards and smaller wearable electronics with other devices such as smartphones and watches. Using only reflections, an interscatter system requires no specialized equipment, relying solely on mobile devices to generate Wi-... » read more

System Bits: July 19


Using carbon nanotubes to leapfrog today’s silicon chips According to Stanford University’s Subhasish Mitra, associate professor of electrical engineering and of computer science, and H.-S. Philip Wong, professor of electrical engineering, the future of supercomputing might actually be really, really small. With support from the National Science Foundation, the two are working with IBM and... » read more

Pathfinding Beyond FinFETs


Though the industry will likely continue to find ways to extend CMOS finFET technology further than we thought possible, at some point in the not-so-distant future, making faster, lower power ICs will require more disruptive changes. For something that could be only five to seven years out, there’s a daunting range of contending technologies. Improvements through the process will help, from E... » read more

Next EUV Challenge: Pellicles


Extreme ultraviolet (EUV) lithography is still not ready for high-volume manufacturing, but the technology is at least moving in the right direction. Both the [gettech id="31045" comment="EUV"] light source and resists are making noticeable progress, even though there are still challenges in the arena. And then, there is the EUV mask infrastructure, which also has some gaps. “When EUV i... » read more

Power/Performance Bits: April 26


An on-chip light source Researchers at the Karlsruhe Institute of Technology (KIT) demonstrated that carbon nanotubes are suited for use as an on-chip light source. By integrating tiny carbon nanotubes into a nanostructured waveguide, the team developed a compact miniaturized switching element that converts electric signals into clearly defined optical signals. "The nanostructures act lik... » read more

System Bits: April 12


Highly aligned, wafer-scale films Rice University researchers, with support from Los Alamos National Laboratory, have created inch-wide, flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes with the help of a simple filtration process. The chirality-enriched single-walled carbon nanotubes assemble themselves by the millions into long rows that are aligned better... » read more

Power/Performance Bits: March 15


Magnetic computing Engineers at the University of California, Berkeley, demonstrated that magnetic chips can operate with the lowest fundamental level of energy dissipation possible under the laws of thermodynamics. "We wanted to know how small we could shrink the amount of energy needed for computing," said Jeffrey Bokor, a UC Berkeley professor of electrical engineering and computer sci... » read more

← Older posts