Manufacturing Bits: Oct. 18

Measuring gooey materials The National Institute of Standards and Technology (NIST) and Thermo Fisher Scientific have devised an instrument that correlates the flow properties of “soft gooey” materials, such as gels, molten polymers and biological fluids. The instrument, called a rheo-Raman microscope, combines three instruments into one system. First, the system incorporates a Raman sp... » read more

Manufacturing Bits: Sept. 13

Direct-write liquid litho The Department of Energy’s Oak Ridge National Laboratory has developed what could be called direct-write liquid lithography. In the lab, researchers have modified a scanning transmission electron microscope (STEM). Then, using the STEM as an e-beam tool, researchers have devised a technology that enables the direct write of tiny features in “microfabricated liq... » read more

Manufacturing Bits: Aug. 16

Safer drinking water Two-dimensional materials are gaining steam in the R&D labs. 2D materials include graphene, boron nitride (BN) and the transition-metal dichalcogenides (TMDs). These materials could one day enable future field-effect transistors (FETs). One TMD, molybdenum disulfide (MoS2), is also generating interest in other fields. Molybdenum disulfide consists of two elements--moly... » read more

Manufacturing Bits: Aug. 9

Faster FEBIDs Focused electron beam induced deposition (FEBID) is generating steam in the industry. Still in the R&D stage, FEBID makes use of an electron beam from a scanning electron microscope. Basically, it decomposes gaseous molecules, which, in turn, deposit materials and structures on a surface at the nanoscale. One of the big applications is a futuristic manufacturing technology... » read more

Manufacturing Bits: Feb. 23

EUV resist venture JSR and Imec have signed a deal to form a joint venture to develop resists for extreme ultraviolet (EUV) lithography. The new company, dubbed EUV Resist Manufacturing & Qualification Center NV, is incorporated with a majority of the total shares held by JSR Micro NV. As EUV technology advances, the IC industry is putting pressure on materials suppliers and other vendo... » read more

Manufacturing Bits: Feb. 9

3D chip consortium The 3D integration consortium of IRT Nanoelec has a new member--EV Group. Based in Grenoble, France, IRT Nanoelec is an R&D center headed by CEA-Leti. Formed in 2012, the 3D integration consortium is one of IRT’s core programs. EV Group joins Leti, Mentor Graphics, SET and STMicroelectronics as members of the 3D consortium. The program is developing a 3D integration ... » read more

Power/Performance Bits: May 26

Woven fabric electrodes An international team including scientists from the University of Exeter pioneered a new technique to embed transparent, flexible graphene electrodes into fibers commonly associated with the textile industry. Exeter Professor Monica Craciun, co-author of the research said: "This is a pivotal point in the future of wearable electronic devices. The potential has been... » read more

Power/Performance Bits: March 3

Black phosphorus photodetectors Phosphorus, a highly reactive element commonly found in match heads, tracer bullets, and fertilizers, can be turned into a stable crystalline form known as black phosphorus. In a new study, researchers from the University of Minnesota used an ultrathin black phosphorus film 20 atoms thick to demonstrate high-speed data communication on nanoscale optical circui... » read more

Avogy: Vertical GaN Power Devices

Gallium nitride (GaN), a binary III-V bandgap material, has been used to make LEDs for the last several years. GaN has also been touted as the next big thing in power electronics and RF. To some degree, GaN has made inroads in RF, especially in high-end defense and aerospace applications. But the technology is having mixed success in power electronics. Today’s GaN-on-silicon devices are l... » read more

Manufacturing Bits: Jan. 14

MoS2 FETs Two-dimensional materials are gaining steam in the R&D labs. The 2D materials include graphene, boron nitride (BN) and the transition-metal dichalcogenides (TMDs). One TMD, molybdenum diselenide (MoS2), is an attractive material for use in future field-effect transistors (FETs). MoS2 has several properties, including a non-zero band gap, atomic scale thickness and pristine int... » read more