Clocks Getting Skewed Up


At a logical level, synchronous designs are very simple and the clock just happens. But the clocking network is possibly the most complex in a chip, and it's fraught with the most problems at the physical level. To some, the clock is the AC power supply of the chip. To others, it is an analog network almost beyond analysis. Ironically, there are no languages to describe clocking, few tools t... » read more

Power Optimization: What’s Next?


Concerns about the power consumed by semiconductors has been on the rise for the past couple of decades, but what can we expect to see coming in terms of analysis and automation from EDA companies, and is the industry ready to make the investment? Ever since Dennard scaling stopped providing automatic power gains by going to a smaller geometry, circa 2006, semiconductors have been increasing... » read more

Tapping Into Non-Volatile Logic


Research is underway to develop a new type of logic device, called non-volatile logic (NVL), based on ferroelectric FETs. FeFETs have been a topic of high interest at recent industry conferences, but the overwhelming focus has been using them in memory arrays. The memory bit cell, however, is simply a transistor that can store a state. That can be leveraged in other applications. “Non-v... » read more

SoC Integration Complexity: Size Doesn’t (Always) Matter


It’s common when talking about complexity in systems-on-chip (SoCs) to haul out monster examples: application processors, giant AI chips, and the like. Breaking with that tradition, consider an internet of things (IoT) design, which can still challenge engineers with plenty of complexity in architecture and integration. This complexity springs from two drivers: very low power consumption, eve... » read more

Design For Reliability


Circuit aging is emerging as a mandatory design concern across a swath of end markets, particularly in markets where advanced-node chips are expected to last for more than a few years. Some chipmakers view this as a competitive opportunity, but others are unsure we fully understand how those devices will age. Aging is the latest in a long list of issues being pushed further left in the desig... » read more

Designing Low Energy Chips And Systems


Energy optimization is beginning to shift left as design teams begin examining new ways to boost the performance of devices without impacting battery life or ratcheting up electricity costs. Unlike power optimization, where a skilled engineering team may reduce power by 1% to 5%, energy efficiency may be able to cut effective power in half. But those gains require a significant rethinking of... » read more

Low Power Still Leads, But Energy Emerges As Future Focus


In 2021 and beyond, chips used in smartphones, digital appliances, and nearly all major applications will need to go on a diet. As the amount of data being generated continues to swell, more processors are being added everywhere to sift through that data to determine what's useful, what isn't, and how to distribute it. All of that uses power, and not all of it is being done as efficiently as... » read more

Performance and Power Tradeoffs At 7/5nm


Semiconductor Engineering sat down to discuss power optimization with Oliver King, CTO at Moortec; João Geada, chief technologist at Ansys; Dino Toffolon, senior vice president of engineering at Synopsys; Bryan Bowyer, director of engineering at Mentor, a Siemens Business; Kiran Burli, senior director of marketing for Arm's Physical Design Group; Kam Kittrell, senior product management group d... » read more

Is DVFS Worth The Effort?


Almost all designs have become power-aware and are being forced to consider every power saving technique, but not all of them are yielding the expected results. Moreover, they can add significant complexity into designs, increasing the time it takes to get to tapeout and boosting up the cost. Dynamic voltage and frequency scaling (DVFS) is one such power and energy saving technique now being... » read more

Monitoring Chips After Manufacturing


New regulations and variability of advanced process nodes are forcing chip designers to insert additional capabilities in silicon to help with comprehension, debug, analytics, safety, security, and design optimization. The impact of this will be far-reaching as the industry discusses what capabilities can be shared between these divergent tasks, the amount of silicon area to dedicate to it, ... » read more

← Older posts Newer posts →