Will Self-Heating Stop FinFETs


New transistor designs and new materials don’t appear out of thin air. Their adoption always is driven by the limitations of the incumbent technology. Silicon germanium and other compound semiconductors are interesting because they promise superior carrier mobility relative to silicon. [getkc id="185" kc_name="FinFET"] transistor designs help minimize short channel effects, a critical limi... » read more

Power Impacting Cost Of Chips


The increase in complexity of the power delivery network (PDN) is starting to outpace increases in functional complexity, adding to the already escalating costs of modern chips. With no signs of slowdown, designers have to ensure that overdesign and margining do not eat up all of the profit margin. The semiconductor industry is used to problems becoming harder at smaller geometries, but unti... » read more

Why Auto Designs Take So Long


Designing chips for the automotive market is adding significant overhead, particularly for chips with stringent safety requirements. On the verification side it could result in an additional 6 to 12 months of work. On the design side, developing the same processor in the mobile market would take 6 fewer man months. And when it comes to complex electronic control units (ECUs) or [getkc id="81... » read more

What Can Be Cut From A Design?


A long-standing approach of throwing everything into a chip increasingly is being replaced by a focus on what can be left out it. This shift is happening at every level, from the initial design to implementation. After years of trying to fill every square nanometer of real estate on a piece of silicon with memory and logic, doubling the number of [getkc id="26" kc_name="transistors"] from on... » read more

Routing Signals At 7nm


[getperson id="11763" comment="Tobias Bjerregaard"], [getentity id="22908" e_name="Teklatech's"] CEO, discusses the challenges of designs at 7nm and beyond, including power integrity, how to reduce IR drop and timing issues, and how to improve the economics of scaling. SE: How much further can device scaling go? Bjerregaard: The way you should look at this is [getkc id="74" comment="Moore... » read more

The Benefits Of Antifuse OTP


One-time programmable (OTP) memory is a type of non-volatile memory (NVM) that commonly comprises of electrical fuse (eFuse) and antifuse. The advantages of OTP memory over multi-time programmable (MTP) memory, such as EEPROM or flash memory, are smaller area and no additional wafer processing steps. Therefore, for many low-cost applications, the OTP memory is used to replace the MTP memory. ... » read more

7nm Design Success Starts With Multi-Domain Multi-Physics Analysis


Companies can benefit from advancements in the latest semiconductor process technology by delivering smaller, faster and lower power products, especially for those servicing mobile, high performance computing and automotive ADAS applications. By using 7nm processes, design teams are able to add a lot more functionality onto a single chip and lower the power consumption by scaling operating volt... » read more

Partitioning For Power


Examine any smartphone design today and most of the electronic circuitry is "off" most of the time. And regardless of how many processor cores are available, it's rare to use more than a couple of those cores at any point in time. The emphasis is shifting, though, as the mobility market flattens and other markets such as driver-assisted vehicles and IoT begin gaining traction. In a car, turn... » read more

Toward Real-World Power Analysis


The expansion of emulation into new fields, rather than just functional verification, is making it possible to do power analysis over longer spans of time. The result is a fast and effective way to analyze real-world scenarios. This is a new field, and it marks a new use of this technology. While it is still evolving, several ideas have surfaced about the best methodology and the best way to... » read more

Closing The Power Integrity Gap


Voltage drop has always been a significant challenge. As far back as 130nm, specialist tools were being used to ensure that enough local decoupling capacitance (decap) cells were inserted in addition to larger decaps implemented around the SoC. But advanced nodes are complicating matters and further increasing complexity. These technological challenges, which underlie the power, performance ... » read more

← Older posts