Power/Performance Bits: Oct. 4

Solar battery Chemists at the University of Wisconsin–Madison and the King Abdullah University of Science and Technology in Saudi Arabia integrated solar cells with a large-capacity battery in a single device that eliminates the usual intermediate step of making electricity and, instead, transfers the energy directly to the battery's electrolyte. The team used a redox flow battery, or R... » read more

Power/Performance Bits: July 19

Atomic storage In the search for ever-smaller storage, a team of scientists at Delft University in the Netherlands built a 1 kilobyte memory where each bit is represented by the position of one single chlorine atom. "In theory, this storage density would allow all books ever created by humans to be written on a single post stamp," said lead scientist Sander Otte. They reached a storage de... » read more

System Bits: June 28

Deep-learning-based virtual reality tool Given that future systems which enable people to interact with virtual environments will require computers to interpret the human hand’s nearly endless variety and complexity of changing motions and joint angles, Purdue University researchers have created a convolutional neural network-based system that is capable of deep learning. [caption id="att... » read more

System Bits: May 24

Controlling autonomous vehicles in extreme conditions In an approach that could help make self-driving cars of the future safer under hazardous road conditions, a Georgia Institute of Technology research team devised a way to help keep a driverless vehicle under control as it maneuvers at the edge of its handling limits. According to the team comprised of researchers from Georgia Tech’s D... » read more

System Bits: Feb. 23

Making electrons act like liquid While electrical resistance is a simple concept in that rather like friction slowing down an object rolling on a surface, resistance slows the flow of electrons through a conductive material, and now, MIT professor of physics Leonid Levitov and Gregory Falkovich, a professor at Israel’s Weizmann Institute of Science have found that electrons can sometimes tur... » read more

Power/Performance Bits: Feb. 2

Single electron transistors A group coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is setting out on a four year program to develop single electron transistors fully compatible with CMOS technology and capable of room temperature operation. The single electron transistor (SET) switches electricity by means of a single electron. The SET is based on a quantum dot (consisting... » read more

Power/Performance Bits: Jan. 26

New switchable material Two MIT researchers developed a thin-film material whose phase and electrical properties can be switched between metallic and semiconducting simply by applying a small voltage. The material then stays in its new configuration until switched back by another voltage. The discovery could pave the way for a new kind of nonvolatile memory. The findings involve the thin-... » read more

Manufacturing Bits: Dec. 29

Printing hair Using a low-cost, 3D printing technique, Carnegie Mellon University has found a way to produce hair-like strands and fibers. The printer produces plastic hair strand by strand. It takes about 20-25 minutes to generate hair on 10 square millimeters. A video can be seen here. [caption id="attachment_24544" align="alignleft" width="300"] 3D printed hair (Photo: Carnegie Mellon... » read more

Manufacturing Bits: Dec. 8

Quantum computing At this week’s IEEE International Electron Devices Meeting (IEDM) in Washington, D.C., chipmakers, research institutes and universities presented a plethora of papers on several subjects. A large number of papers revolve around the same theme—How to extend Moore’s Law. For this, researchers are working on a number of short- and long-term technologies to propel device... » read more

System Bits: Dec. 1

Extracting the right information in large data sets When solving complex scientific problems, researchers sometimes encounter what is called the curse of dimensionality, that is, they have so much data that they cannot efficiently analyze it. Large data sets can also be expensive and time consuming to acquire, so it is critical to gather only what is necessary. To this end, University of Il... » read more

← Older posts