Assessing ESD Sensitivity Of Interface IP Using Charged Device Model


An electronic device is susceptible to Electrostatic Discharge (ESD) damage during its entire life cycle, especially from the completion of the silicon wafer processing to when the device is assembled in the system. The most commonly used ESD test models are the Human Body Model (HBM) and the Charged Device Model (CDM). Both models assess the ESD sensitivity of a device, however due to the rapi... » read more

Partitioning For Power


Examine any smartphone design today and most of the electronic circuitry is "off" most of the time. And regardless of how many processor cores are available, it's rare to use more than a couple of those cores at any point in time. The emphasis is shifting, though, as the mobility market flattens and other markets such as driver-assisted vehicles and IoT begin gaining traction. In a car, turn... » read more

Implementing ESD Protection In Today’s SoCs


As the semiconductor industry transitions to FinFETs, reliability challenges are increasing. ESD designers are challenged with new issues that would require significant rethinking and redesign of their existing ESD protection strategy. With significant complexity embedded in the silicon, failure analysis and silicon debug is challenging and time consuming even to the ESD experts. Technology ... » read more

Working With FinFETs


One of the key technology trends driving semi-conductor industry is the adoption of finFET processes. As opposed to a traditional planar transistor, the finFET has an elevated channel or “fin,” which the gate wraps around. Due to their structure, finFETs generate much lower leakage power and allow greater device density. Compared to planar transistors, finFET operate at a lower voltage and ... » read more

Accurate Thermal Analysis, Including Thermal Coupling Of On-Chip Hot Interconnect


Driven by rapid advancement in mobile/server computing and automotive/communications, SoCs are experiencing a fast pace of functional integration along with technology scaling. Advanced low power techniques are widely used, while meeting higher performance requirements using a variety of packaging technologies. The Internet of Things (IoT) is further opening up new applications with connected d... » read more

Making Cars Better


The automotive industry, with its double-digit growth, is a very attractive market for equipment manufacturers. This growth is explained not only by the increasing number of cars produced for the Asia market, but also by the shift of basic customer expectations for things such as more hybrid and electrical vehicles, more sophisticated infotainment requirements, and more high-end features. O... » read more

Manufacturing Bits: April 14


Monster waves of light The FOM Institute AMOLF has observed what researchers call monster waves of light. In this phenomenon, monster waves of light appear from nowhere and then disappear again. Researchers have shown that it is possible to influence the probability of this phenomenon. As a result, the technology could lead to faster telecommunication systems or more sensitive sensors, acco... » read more

Stacked Die, Phase Two


The initial hype phase of [getkc id="82" kc_name="2.5D"] appears to be over. There are multiple offerings in development or on the market already from Xilinx, Altera, Cisco, Huawei, IBM, AMD, all focused on better throughput over shorter distances with better yield and lower power. Even Intel has jumped on the bandwagon, saying that 2.5D will be essential for extending [getkc id="74" comment="M... » read more

The Interconnected Web Of Power


Tradeoffs between area and timing used to follow fairly simple rules. You could improve timing by adding area, and occasionally find an architectural solution that would decrease both at the same time. With physical synthesis the relationship became a little more complicated because an increase in area, say to make a drive larger or add another buffer, might upset the layout. That, in turn, cou... » read more

Why Is My Device Better Than Yours?


Differentiation is becoming a big problem in the semiconductor industry with far-reaching implications that extend well beyond just chips. The debate over the future of [getkc id="74" comment="Moore's Law"] is well known, but it's just one element in a growing list that will make it much harder for chip companies, IP vendors and even software developers to stand out from the pack. And withou... » read more

← Older posts