Research Bits: Mar. 11


Ferroelectric nanosheets Engineers from the University of Sydney, RMIT University, University of New South Wales, and University of Technology Sydney created a liquid metal alloy of tin, zirconium, and hafnium. The alloy has a thin oxide layer crust that enables it to be used to harvest ultra-thin tin oxide nanosheets doped with hafnium zirconium oxide, which could then be 2D printed on a subs... » read more

Research Bits: September 11


Combining digital and analog Researchers from École Polytechnique Fédérale de Lausanne (EPFL) propose integrating 2D semiconductors with ferroelectric materials for joint digital and analog information processing, which could improve energy efficiency and support new functionality. The device uses a 2D negative-capacitance tungsten diselenide/tin diselenide tunnel FET (TFET), which consu... » read more

Research Bits: May 2


Reconfigurable FeHEMT Researchers at the University of Michigan created a reconfigurable ferroelectric transistor that could enable a single amplifier to do the work of multiple conventional amplifiers. “By realizing this new type of transistor, it opens up the possibility for integrating multifunctional devices, such as reconfigurable transistors, filters and resonators, on the same plat... » read more

Ferroelectrics: The Dream Of Negative Capacitance


Ferroelectrics are getting a serious re-examination, as chipmakers look for new options to maintain drive current. Ferroelectric materials can provide non-volatile memory, serving an important functional gap somewhere between DRAM and flash memory. Indeed, ferroelectrics for memory and 2D channels for transistors were two highlights of the recent IEEE Electron Device Meeting. Ferroelectri... » read more

Interfacial ferroelectricity in marginally twisted 2D semiconductors


Abstract "Twisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of new metamaterials. Here we demonstrate a room temperature ferroelectric semiconductor that is assembled using mono- or few-layer MoS2. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of tw... » read more

Photonic Integration Based On A Ferroelectric Thin-Film Platform


Photonic-integrated circuits (PICs) using ferroelectric materials are expected to be used in many applications because of its unique optical properties such as large electrooptic coefficients. In this study, a novel PIC based on a ferroelectric thin-film platform was designed and fabricated, where high-speed optical modulator, spot-size converters (SSCs), and a variable optical attenuator (VOA)... » read more

Power/Performance Bits: Jan. 13


Ferroelectric memory Researchers at the Moscow Institute of Physics and Technology and North Carolina State University developed a ferroelectric memory cell and a method for measuring the electric potential distribution across a ferroelectric capacitor, an important aspect of creating new nonvolatile ferroelectric devices. The team's new ferroelectric memory cell is made from a 10nm thick z... » read more

Power/Performance Bits: Sept. 27


Self-organizing circuits Researchers studying the behavior of nanoscale materials at the Department of Energy's Oak Ridge National Laboratory discovered that due an unusual feature of certain complex oxides called phase separation, individual nanoscale regions can behave as self-organized circuit elements, which could support new multifunctional types of computing architectures. "Within a... » read more

Power/Performance Bits: April 19


Ferroelectric non-volatile memory Scientists from the Moscow Institute of Physics and Technology (MIPT), the University of Nebraska, and the University of Lausanne in Switzerland succeeded in growing ultra-thin (2.5-nanometer) ferroelectric films based on hafnium oxide that could potentially be used to develop non-volatile memory elements called ferroelectric tunnel junctions. The film was g... » read more