A Novel Approach To Dummy Fill For Analog Designs Using Calibre SmartFill


With small geometry silicon processes, additional nonfunctional geometric structures are required to maintain layer planarity during the chemical/mechanical polishing (CMP) phase of processing. The automated layout flows to generate such geometries tend to be designed primarily for large system on chip (SOC) digital designs. When applied to mixed-signal layouts, these flows have been seen to ha... » read more

Déjà Vu For CMP Modeling?


One definition of design for manufacturing (DFM) is providing knowledge about the impact of the manufacturing process on a design layout to the designers, so they can use that information to improve the robustness, reliability, or yield of their design before tapeout. Essentially, DFM is about designers taking ownership of the full “lifecycle” of a design, and going beyond the required desi... » read more

The Fill Ecosystem Evolves Again


Several years ago, we wrote about the ecosystem of fill, and how 20nm technology required a much tighter relationship between the foundry, designers and EDA vendors. While the players remain the same, there have been some interesting shifts in fill techniques and usage as designers move to even-smaller technologies. What continues with each node is the additional complexity of the design flo... » read more

Fill Database Management Strategies At Advanced Nodes


Fill has been around for many nodes, and was originally introduced to improve manufacturing results. The foundries learned that by managing density they were able to reduce wafer thickness variations created during chemical-mechanical polishing (CMP) processes, so they introduced density design rule checks (DRC). To meet these density requirements, designers “filled” open areas of the layou... » read more

A Novel Approach To Dummy Fill For Analog Designs


With small geometry silicon processes, additional nonfunctional geometric structures are required to maintain layer planarity during the chemical/mechanical polishing (CMP) phase of processing. The automated layout flows to generate such geometries tend to be designed primarily for large system on chip (SOC) digital designs. When applied to mixed-signal layouts, these flows have been seen to ha... » read more

SoC Integration Mistakes


Semiconductor Engineering sat down to discuss integration challenges with Ruggero Castagnetti, distinguished engineer at LSI; Rob Aitken, an ARM fellow; Robert Lefferts, director of engineering in Synopsys’ Solutions Group; Bernard Murphy, chief technology officer at Atrenta; and Luigi Capodieci, R&D fellow at GlobalFoundries. What follows are excerpts of that roundtable discussion. S... » read more

The Upside Of Through-Silicon Vias


Through-silicon vias (TSVs) for 3D integration are superficially similar to damascene copper interconnects for integrated circuits. Both etch the via, into either silicon or a dielectric, line it with a barrier against copper diffusion, then deposit a seed layer prior to filling the via with copper using some form of aqueous deposition. In both processes, the integrity of the diffusion barrier ... » read more

I Just Want Closure!


By Jean-Marie Brunet We all know it by now, but let’s say it one more time for the cameras—the level of complexity of closure at 20 nm and below is considerably higher than for any previous nodes. While the migration of manufacturing requirements into design started with a few suggested activities at 65 nm, such as recommended rules compliance, lithography checks, and critical area analysi... » read more

DFM Success At SMIC


Jeff Wilson As any integrated circuit (IC) designer knows, design rules are the “first line of defense” foundries provide in the effort to ensure all IC designs are ultimately manufacturable. Coming in a close second, design for manufacturing (DFM) rules enable designers to maximize design capabilities and performance while minimizing or optimizing the use of chip space. At today’s ad... » read more

A New World For Fill At N20


By Jeff Wilson and Jean-Marie Brunet There are many drastic changes required to design, verify, and manufacture semiconductors at the 20nm process node (N20). One of these is fill. At previous design nodes, fill was used just to ensure manufacturability by giving each layer (metal, poly, diffusion) an accepted density. At N20, fill is used to address many more manufacturing issues, and has bec... » read more

← Older posts