Power/Performance Bits: Sept. 6


Carbon nanotube transistors outperform silicon University of Wisconsin-Madison materials engineers created carbon nanotube transistors that outperform silicon transistors, improving the current 1.9 times. The new transistors are particularly promising for wireless communications technologies that require a lot of current flowing across a relatively small area. "This achievement has been a... » read more

Power/Performance Bits: July 26


Flexible MRAM Researchers from the National University of Singapore, Yonsei University, Ghent University and Singapore's Institute of Materials Research and Engineering embedded a magnetic memory chip on a plastic material, flexible enough to be bent into a tube. The new device operates on magnetoresistive random access memory (MRAM), which uses a magnesium oxide (MgO)-based magnetic tunn... » read more

Power/Performance Bits: June 28


Mimicking roses for solar Scientists from the Karlsruhe Institute of Technology (KIT) and the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) reproduced the epidermal cells of rose petals and integrated the transparent replicas into an organic solar cell, with an efficiency gain of 12%. The epidermis of rose petals consists of a disorganized arrangement of densely p... » read more

Power/Performance Bits: May 31


Solar thermophotovoltaics A team of MIT researchers demonstrated a device based on a method that enables solar cells to break through a theoretically predicted ceiling on how much sunlight they can convert into electricity. Since 1961 it has been known that there is an absolute theoretical limit, called the Shockley-Queisser Limit, to how efficient traditional solar cells can be in their ... » read more

Power/Performance Bits: Dec. 1


Hiding wires from the sun There's a problem with most solar cells: the electricity-carrying metal wire grid on top prevents sunlight from reaching the semiconductor below. A team from Stanford University tackled this problem, discovering a way to hide the reflective upper contact and funnel light directly to the semiconductor below. For the study, the researchers placed a 16-nanometer-thi... » read more

Power/Performance Bits: Sept. 15


Stretchy metal Washington State University researchers stretched metal films used in flexible electronics to twice their size without breaking. The discovery could lead to dramatic improvements and addresses one of the biggest challenges in flexible electronics, an industry still in its infancy with applications such as bendable batteries, robotic skins, wearable monitoring devices and se... » read more

Power/Performance Bits: Oct. 28


More powerful, sensitive wearables With their special electronic and optical properties, nanomaterials such as graphene and molybdenum sulfide have created excitement among UCLA scientists for their potential to revolutionize transistors and circuits. Research is underway there that has the potential to increase the efficiency and capabilities of the 2D layered semiconductors used in high-s... » read more

System Bits: Sept. 9


First transistor-based flexible device with graphene A flexible display incorporating graphene in its pixels’ electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic, the first time graphene has been used in a transistor-based flexible device. The prototype is meant to be a first step towards the wider implementation of graphene and graphene-like ... » read more