HBM2: It’s All About The PHY


HBM DRAM is currently used in graphics, high-performance computing (HPC), server, networking and client applications. HBM, says JEDEC HBM Task Group Chairman Barry Wagner, provides a “compelling solution” to reduce the IO power and memory footprint for the most demanding applications. Recent examples of second-generation HBM deployment include NVIDIA’s Quadro GP100 GPU which is paired wit... » read more

2.5D Adds Test Challenges


OSATs and ATE vendors are making progress in determining what works and what doesn't in 2.5D packaging, expanding their knowledge base as this evolves into a mainstream technology. A [getkc id="82" kc_name="2.5D"] package generally includes an ASIC connected to a stack of memory chips—usually high-bandwidth memory—using an [getkc id="204" kc_name="interposer"] or some type of silicon bri... » read more

The Challenges Of Designing An HBM2 PHY


Originally targeted at the graphics industry, HBM continues to gain momentum in the server and networking markets as system designers work to move higher bandwidth closer to the CPU. Expanding DRAM capacity – which boosts overall system performance – allows data centers to maximize local DRAM storage for wide throughput. HBM DRAM architecture effectively increases system memory bandwidth... » read more

Smart Manufacturing Gains Momentum


Smart manufacturing is gaining traction as a way of addressing increased market fragmentation while still leveraging economies of scale. The goal is to add a level of flexibility into manufacturing processes that until recently was considered impossible. Although the approach makes sense in theory, real-world implementation is proving far from consistent. Sometimes referred to as Industr... » read more

Stepping Back From Scaling


Architectures, packaging and software are becoming core areas for semiconductor research and development, setting the stage for a series of shifts that will impact a large swath of the semiconductor industry. While there is still demand from the largest chipmakers for increased density at the next process node, the underlying economics for foundries, equipment vendors and IP developers are f... » read more

The Future Of Memory


Semiconductor Engineering sat down to discuss future memory with Frank Ferro, senior director of product management for memory and interface IP at Rambus; Marc Greenberg, director of product marketing at Synopsys; and Lisa Minwell, eSilicon's senior director of IP marketing. What follows are excerpts of that conversation. To view part 1, click here. Part 2 is here. SE: What’s the next big ... » read more

May The Cheapest Memory Win


There are a number of new memory types on the horizon. So why are we still using DRAM, SRAM and hard disk drives developed decades ago? The answer is complicated. Memory, whether it’s on-chip static RAM cache or off-chip dynamic RAM—or flash storage or spinning magnetic media—is really a stack of data storage technologies that need to work seamlessly together and with other non-memory ... » read more

Executive Insight: Jack Harding


[getperson id="11145" comment="Jack Harding"], president and CEO of [getentity id="22242" e_name="eSilicon"], sat down with Semiconductor Engineering to talk about consolidation, business relationships, what it will take to survive in the IoT age, and how to better optimize chips. What follows are excerpts of that conversation. SE: We’ve been looking at consolidation for a while and all th... » read more

Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at Samsung; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. What follows are excerpts of tha... » read more

Architecting Memory For Next-Gen Data Centers


The industry’s insatiable appetite for increased bandwidth and ever-higher transfer rates is driven by a burgeoning Internet of Things (IoT), which has ushered in a new era of pervasive connectivity and generated a tsunami of data. In this context, datacenters are currently evaluating a wide range of new memory initiatives. All seek to optimize efficiency by reducing data transport, thus sign... » read more

← Older posts