Chip Industry Technical Paper Roundup: March 26


New technical papers recently added to Semiconductor Engineering’s library. [table id=209 /] Find last week's technical paper additions here. » read more

Band-To-Band Tunneling And Negative Differential Resistance in Heterojunctions Built Entirely Using 2D Materials


A technical paper titled "Electrical characterization of multi-gated WSe2 /MoS2 van der Waals heterojunctions" was published by researchers at Helmholtz-Zentrum Dresden Rossendorf (HZDR), TU Dresden, National Institute for Materials Science (Japan) and NaMLab gGmbH. Abstract "Vertical stacking of different two-dimensional (2D) materials into van der Waals heterostructures exploits the pr... » read more

Research Bits: Jan. 8


High mobility graphene Researchers at the Georgia Institute of Technology and Tianjin University created a functional semiconductor made from graphene that is compatible with conventional microelectronics processing methods. "We now have an extremely robust graphene semiconductor with 10 times the mobility of silicon, and which also has unique properties not available in silicon," said Walt... » read more

Week In Review: Auto, Security, Pervasive Computing


BMW, General Motors, Honda, Hyundai, Kia, Mercedes-Benz, and Stellantis will create an electric vehicle charging network, installing more than 30,000 high-powered DC charge points accessible to any cars that use Combined Charging System (CCS) or North American Charging Standard (NACS) connectors. Opening summer 2024, the network will leverage Plug & Charge technology and allow easy digital ... » read more

Research Bits: June 8


Five-second coherence for silicon carbide qubits Researchers from the University of Chicago, National Institutes for Quantum Science and Technology, and Linköping University built a qubit from silicon carbide and was able to retain its coherence, or the length of time the quantum state persists, for over five seconds. “It’s uncommon to have quantum information preserved on these human ... » read more

Research Bits: April 26


Photonic quantum computers Researchers from Stanford University propose a simpler design method for photonic quantum computers. The proposed design uses a laser to manipulate a single atom that, in turn, can modify the state of the photons via a phenomenon called “quantum teleportation.” The atom can be reset and reused for many quantum gates, eliminating the need to build multiple distinc... » read more

Manufacturing Bits: Jan. 26


EU FIB project The European Union (EU) has launched a new project to develop next-generation structures and materials using focused ion beam (FIB) systems. The EU project, dubbed Focused Ion Technology for Nanomaterials or FIT4NANO, is spearheaded by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) organization. The project aims to bring European researchers and companies together to develop... » read more

Power/Performance Bits: Feb. 25


Thinner, flexible touchscreens Researchers from RMIT University, University of New South Wales, and Monash University developed a thin, flexible electronic material for touchscreens. The material is 100 times thinner than current touchscreen materials. The new screens are still based on indium-tin oxide (ITO), a common touchscreen material. However, a liquid metal printing approach was used... » read more

Power/Performance Bits: Jan. 10


Antiferromagnetic magnetoelectric RAM Researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Swiss Nanoscience Institute, and the University of Basel developed a concept for a new, low power memory chip. In particular, the group focused on finding an alternative to MRAM using magnetoelectric antiferromagnets, which are activated by an electrical voltage rather than by a current. "... » read more

Power/Performance Bits: Nov. 15


Another record-breaking tandem perovskite solar cell University of California, Berkeley, and Lawrence Berkeley National Laboratory scientists report a new design for perovskite solar cells that achieves an average steady-state efficiency of 18.4%, with a high of 21.7% and a peak efficiency of 26%. "This has a great potential to be the cheapest photovoltaic on the market, plugging into any... » read more

← Older posts