The Week In Review: Design


Tools & IP Arm unveiled a new suite of IP focused on machine learning for edge devices. Currently dubbed Project Trillium, it includes the Arm ML processor, the second-generation Arm Object Detection (OD) processor, and open-source Arm NN software. The ML processor provides more than 4.6 TOPs in mobile environments with efficiency of 3 TOPs/W. People detection is a focus of the OD processo... » read more

Pushing Performance Limits


Trying to squeeze the last bit of performance out of a chip sounds like a good idea, but it increases risk and cost, extends development time, reduced yield, and it may even limit the environments in which the chip can operate. And yet, given the amount of margin added at every step of the development process, it seems obvious that plenty of improvements could be made. "Every design can be o... » read more

Introduction To eFPGA Hardware


Intel builds processor chips and Arm provides processor cores to integrate into chips. Xilinx and Intel (nee Altera) build FPGAs and a range of new startups provide embedded FPGA (eFPGA) to integrate into chips: Achronix, Flex Logix, Menta and QuickLogic. As the diagram above shows, an FPGA chip is a core (the “fabric”) which is surrounded by various kinds of I/O including SERDES,... » read more

Metal Markets In Flux


Markets for critical metals are becoming turbulent, creating shortages and widespread supply chain concerns. Critical metals are the raw elements and materials used in the production of aerospace/defense systems, automobiles, batteries, computers and electronic products. Many critical metals also are scarce, and there is high risk associated with their supply. In a recent report, the Europea... » read more

The Importance Of Metal Stack Compatibility For Semi IP


Architects and front end designers usually leave the back end to the physical designers: they know there can be different numbers of metal layers, but may not realize the characteristics of each metal layer may vary layer by layer as well and that different chips use different metal stack ups to optimize for their requirements. This slide from IDF14 shows a simple summary of the breadth of v... » read more

All About Interconnects


It's well known that advanced chips contain billions of transistors – this is an incredible, mind-blowing fact to be sure – but did you know that large-scale integrated chips (about the size of a fingernail) can contain ~30 miles of interconnect “wires” in stacked levels? These wires function like highways or pipelines to transport electrons, connect transistors and other components to ... » read more

Heterogeneous Cache Coherence Requires A Common Internal Protocol


Machine learning and artificial intelligence systems are driving the need for systems-on-chip containing tens or even hundreds of heterogeneous processing cores. As these systems expand in size and complexity, it becomes too difficult to manage data flow solely through software means. An approach that simplifies software while improving performance and power consumption is to implement hardware... » read more

Shhhhh… Deadlocks Anonymous In Session


I am sure there is an anonymous group – like Alcoholics Anonymous – headquartered in Silicon Valley, meeting every quarter to discuss the deadlocks that have paralyzed their products, roadmap and deployments. In discreet venues in every town, small groups of engineers huddle together to share war stories about the disgruntled customers whose trust was lost because of a deadlock discovered o... » read more

New BEOL/MOL Breakthroughs?


Chipmakers are moving ahead with transistor scaling at advanced nodes, but it's becoming more difficult. The industry is struggling to maintain the same timeline for contacts and interconnects, which represent a larger portion of the cost and unwanted resistance in chips at the most advanced nodes. A leading-edge chip consists of three parts—the transistor, contacts and interconnects. The ... » read more

Changing Direction In Chip Design


Andrzej Strojwas, chief technologist at PDF Solutions and professor of electrical and computer engineering at Carnegie Mellon University—and the winner of this year's Phil Kaufman Award for distinguished contributions to EDA—sat down with Semiconductor Engineering to talk about device scaling, why the semiconductor industry will begin to fragment around new architectures and packaging, and ... » read more

← Older posts