Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. ... » read more

Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. ... » read more

The Future Of Memory


Semiconductor Engineering sat down to discuss future memory with Frank Ferro, senior director of product management for memory and interface IP at [getentity id="22671" e_name="Rambus"]; Marc Greenberg, director of product marketing at [getentity id="22035" e_name="Synopsys"]; and Lisa Minwell, [getentity id="22242" e_name="eSilicon"]'s senior director of IP marketing. What follows are excerpt... » read more

End Of Mixed Signal Engineering?


EDA companies are stepping back after years of trying to force engineers to combine analog and digital disciplines. Rather than emphasizing [getkc id="38" kc_name="mixed signal"] as a single expertise, they are building bridges and translation mechanisms between the two worlds. The moves cap more than a decade of trying to find optimal ways to pack [getkc id="37" kc_name="analog"] and digita... » read more

2.5D Becomes A Reality


Semiconductor Engineering sat down to discuss 2.5D and advanced packaging with Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; Rob Aitken, an [getentity id="22186" comment="ARM"] fellow; John Shin, vice president at [getentity id="22903" e_name="Marvell"]; Bill Isaacson, director of ASIC marketing at [getentity id="22242" e_name="eSilicon"]; Frank Ferro, senior di... » read more

Tech Talk: 2.5D Issues


Bill Isaacson, director of ASIC marketing at eSilicon, about how viable this packaging approach is, organic vs. inorganic interposers, where the problems are, thermal coupling, interposer cost, and what will change over the next couple years. [youtube vid=t6KUnC-oU5g] » read more

Why Use A Package?


Subramanian Iyer, distinguished chancellor's professor in UCLA's Electrical Engineering Department—and a former fellow and director of the systems scaling technology department at IBM—sat down with Semiconductor Engineering to talk about the future of chip scaling. What follows are excerpts of that conversation. SE: Advanced packaging is being viewed as a way to extend scaling in the fut... » read more

Advanced Packaging Is Real. Now What?


For the past five years, it's been clear that 2.5D, fan-outs and other forms of system-in-package were on the horizon. Exactly when they would arrive no one knew. The most common prediction was that the timing would depend on when one of the big chipmakers decided to go down that route. The theory was that the remainder of the industry would follow, ecosystem issues would be sorted out—partic... » read more

Thinking Outside The Chip


Intel will begin adding 2.5D and 3D packaging into its processors, following the lead set by IBM and AMD in recognizing that new packaging approaches are essential for improving performance and lowering power. This shift won't derail the semiconductor industry's efforts to the reach future process nodes or continually shrink features, but it does add context for other factors that in... » read more

Rethinking Memory


Getting data in and out of memory is as important as the speed and efficiency of a processor, but for years design teams managed to skirt the issue because it was quicker, easier and less expensive to boost processor clock frequencies with a brute-force approach. That worked well enough prior to 90nm, and adding more cores at lower clock speeds filled the gap starting at 65nm. After that, th... » read more

← Older posts