Using AI/ML To Minimize IR Drop


IR drop is becoming a much bigger problem as technology nodes scale and more components are packed into advanced packages. This is partly a result of physics, but it's also the result of how the design flow is structured. In most cases, AI/ML can help. The underlying problem is that moving to advanced process nodes, and now 3D-ICs, is driving current densities higher, while the power envelop... » read more

Power Sub-Mesh Construction To Mitigate IR Drop And Minimize Routing Overhead (Intel)


A new technical paper titled "Power Sub-Mesh Construction in Multiple Power Domain Design with IR Drop and Routability Optimization" was published by researchers at Intel Corporation and National Taiwan University. Abstract: "Multiple power domain design is prevalent for achieving aggressive power savings. In such design, power delivery to cross-domain cells poses a tough challenge at adv... » read more

Which Data Works Best For Voltage Droop Simulation


Experts at the Table: Semiconductor Engineering sat down to talk about the need for the right type of data, why this has to be done early in the design flow, and how 3D-IC will affect all of this, with Bill Mullen, distinguished engineer at Ansys; Rajat Chaudhry, product management group director at Cadence; Heidi Barnes, senior applications engineer at Keysight; Venkatesh Santhanagopalan, prod... » read more

Analog Design Complicates Voltage Droop


Experts at the Table: Semiconductor Engineering sat down to talk about voltage droop in analog and mixed-signal designs, and the need for multi-vendor tool interoperability and more precision, with Bill Mullen, distinguished engineer at Ansys; Rajat Chaudhry, product management group director at Cadence; Heidi Barnes, senior applications engineer at Keysight; Venkatesh Santhanagopalan, product ... » read more

Managing P/P Tradeoffs With Voltage Droop Gets Trickier


Experts at the Table: Semiconductor Engineering sat down to talk about voltage droop/IR drop with Bill Mullen, distinguished engineer at Ansys; Rajat Chaudhry, product management group director at Cadence; Heidi Barnes, senior applications engineer at Keysight Technologies; Venkatesh Santhanagopalan, product manager at Movellus; Joe Davis, senior director for Calibre interfaces and mPower EM/IR... » read more

Balancing IR Drop Unpredictability With Post-Silicon Flexibility


The concept of IR drop in silicon chips has always been a crucial aspect of chip design. However, recent technological trends and the emergence of new challenges, such as voltage-sensitive paths, have introduced a degree of uncertainty in predicting and effectively managing IR drop. These uncertainties are driving the need for a more flexible approach in mitigating on-die voltage droop. Increa... » read more

Mitigating Voltage Droop


Voltage droop, also known as IR drop, is a phenomenon that occurs when the current in the power delivery network abruptly changes due to workload fluctuations. This can lead to supply voltage drops across system-on-chips (SoCs) which can cause severe performance degradation, limit their energy efficiency, and in extreme cases can cause catastrophic timing failures. To avoid these issues, conven... » read more

Taming Corner Explosion In Complex Chips


There is a tenuous balance between the number of corners a design team must consider, the cost of analysis, and the margins they insert to deal with them, but that tradeoff is becoming a lot more difficult. If too many corners of a chip are explored, it might never see production. If not enough corners are explored, it could reduce yield. And if too much margin is added, the device may not be c... » read more

Minimizing EM/IR Impacts On IC Design Reliability And Performance


By Joel Mercier and Karen Chow As technologies and foundry process nodes continue to advance, it gets more difficult to design and verify integrated circuits (ICs). The challenges become even more apparent in 5nm and below nodes, and as the industry moves away from fin field-effect transistor (finFET) and into gate-all-around field-effect transistor (GAAFET) technologies. There are many prob... » read more

Beyond 5nm: Review of Buried Power Rails & Back-Side Power


A new technical paper titled "A Holistic Evaluation of Buried Power Rails and Back-Side Power for Sub-5 nm Technology Nodes" is presented by researchers at UT Austin, Arm Research, and imec. Find the technical paper here. Published July 2022. S. S. T. Nibhanupudi et al., "A Holistic Evaluation of Buried Power Rails and Back-Side Power for Sub-5 nm Technology Nodes," in IEEE Transactions... » read more

← Older posts