Filtering Out Fab Problems


Bertrand Loy, president and CEO of Entegris, sat down to discuss the semiconductor industry, process challenges and filter technology with Semiconductor Engineering. What follows are excerpts of that conversation. SE: What is the outlook for the IC industry? Loy: A lot of positive things are happening. Eighty percent of what we do are consumables, which would be chemistries and filters. ... » read more

Reworking Established Nodes


New technology markets and a flattening in smartphone growth has sparked a resurgence in older technology processes. For many of these up-and-coming applications, there is no compelling reason to migrate to the latest process node, and equipment companies and fabs are rushing to fill the void. As with all electronic devices, the focus is on cost-cutting. But because these markets are likely ... » read more

Moore’s Law: Toward SW-Defined Hardware


Pushing to the next process node will continue to be a primary driver for some chips—CPUs, FPGAs and some ASICS—but for many applications that approach is becoming less relevant as a metric for progress. Behind this change is a transition from using customized software with generic hardware, to a mix of specialized, heterogeneous hardware that can achieve better performance with less ene... » read more

Design Complexity Drives New Automation


As design complexity grows, so does the need for every piece in the design flow—hardware, software, IP, as well as the ecosystem — to be tied together more closely. At one level, design flow capacity is simply getting bigger to accommodate massive [getkc id="185" kc_name="finFET"]-class designs. But beyond sheer size, there are new interactions in the design flow that place much more emp... » read more

The Limits Of The Lifecycle


In the first article in my series on sustainability, I cited one estimate that attributed most of the electricity consumed by an integrated circuit to manufacturing, not use. Other analyses, however, come to exactly the opposite conclusion, with above 90% of lifetime energy consumption accounted for by the use phase. How can that be? The glib answer is that industry efforts to build more eff... » read more

Focus Shifts To Architectures


Chipmakers increasingly are relying on architectural and micro-architectural changes as the best hope for improving power and performance across a spectrum of markets, process nodes and price points. While discussion about the death of [getkc id="74" comment="Moore's Law"] predates the 1-micron process node, there is no question that it is getting harder for even the largest chipmakers to st... » read more

The Road To 5nm


There is strong likelihood that enough companies will move to 7nm to warrant the investment. How many will move forward to 5nm is far less certain. Part of the reason for this uncertainty is big-company consolidation. There are simply fewer customers left who can afford to build chips at the most advanced nodes. Intel bought Altera. Avago bought Broadcom. NXP bought Freescale. GlobalFoundrie... » read more

How To Build Systems In Package


The semiconductor industry is racing to define a series of road maps for semiconductors to succeed the one created by the ITRS, which will no longer be updated, including a brand new one focused on heterogeneous integration. The latest entry will establish technology targets for integration of heterogeneous multi-die devices and systems. It has the support of IEEE's Components, Packaging and... » read more

Plotting The Next Semiconductor Road Map


The semiconductor industry is retrenching around new technologies and markets as Moore's Law becomes harder to sustain and growth rates in smart phones continue to flatten. In the past, it was a sure bet that pushing to the next process node would provide improvements in power, performance and cost. But after 22nm, the economics change due to the need for multi-patterning and finFETs, and th... » read more

The Other Side Of Device Scaling


The push to 10nm and 7nm is a relatively straightforward path in PowerPoint. In multiple presentations across the semiconductor industry, in fact, it has been portrayed as a straight line progression spanning decades. While most chipmakers are aware that the cost per transistor has been increasing below 22nm, due to double patterning and the challenges in designing finFETs and dealing with d... » read more

← Older posts