System Bits: July 18


Melanoma predicted from images with a high degree of accuracy by neural network model The poke and punch of traditional melanoma biopsies could be avoided in the near future, thanks to work by UC Santa Barbara researchers. UCSB undergrad Abhishek Bhattacharya is using the power of artificial intelligence to help people ascertain whether that new and strange mark is, in fact, the deadly skin... » read more

Power/Performance Bits: July 18


Ad hoc "cache hierarchies" Researchers at MIT and Carnegie Mellon University designed a system that reallocates cache access on the fly, to create new "cache hierarchies" tailored to the needs of particular programs. Dubbed Jenga, the system distinguishes between the physical locations of the separate memory banks that make up the shared cache. For each core, Jenga knows how long it would t... » read more

Power/Performance Bits: July 11


3D chip integrates computing, storage Researchers at Stanford University and MIT developed a prototype 3D chip that integrates computation and data storage, based on carbon nanotubes and resistive RAM (RRAM) cells. The researchers integrated over 1 million RRAM cells and 2 million carbon nanotube FETs, making what the team says is the most complex nanoelectronic system ever made with emergi... » read more

System enables large speedups — as much as 88-fold — on common parallel-computing algorithms (MIT)


Source: MIT/ CSAIL: Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee, Victor A. Ying, Joel Emer, Daniel Sanchez As is commonly known, the chips in most modern desktop computers have four cores or processing units, which can run different computational tasks in parallel, but that the chips of the future could have dozens or even hundreds of cores, and taking advantage o... » read more

Ignoring Anomalies


Everyone has been in this situation at some point in their career—you have a data point that is so far out of the ordinary that you dismiss it as erroneous. You blame the test equipment, or the fact that it is Friday afternoon and happy hour started 10 minutes ago. In most cases it may never happen again and nobody will ever notice that you quietly swept it under the rug. But in doing so, ... » read more

System Bits: July 3


VW emissions tests cheat code found A team of researchers from UC San Diego, Ruhr University along with an independent researcher has uncovered the mechanism that Volkswagen used to circumvent U.S. and European emission tests over a period of at least six years before the EPA put the company on notice in 2015 for violating the Clean Air Act. The researchers found the code that allowed onboa... » read more

Multi-Robot Path Planning For Swarm of Robots that Can Both Fly, Drive (MIT)


Source: MIT/CSAIL.Brandon Araki, John Strang, Sarah Pohorecky, Celine Qiu, Tobias Naegeli, and Daniela R Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) propose that if robots could be programmed to both walk and take flight, it would open up possibilities including machines that could fly into construction areas or disaster zones that aren’t near ... » read more

System Bits: June 27


Entangling photons for bug-proof communication With the increasing processing power of computers, conventional encryption of data is becoming increasingly insecure, reminded Fraunhofer researchers that are proposing one solution is coding with entangled photons. The team is developing a quantum coding source that allows the transport of entangled photons from satellites, expected to be an impo... » read more

System Bits: June 13


Nimble-fingered robots enabled by deep learning Grabbing awkwardly shaped items that humans regularly pick up daily is not so easy for robots, as they don’t know where to apply grip. To overcome this, UC Berkeley researchers have a built a robot that can pick up and move unfamiliar, real-world objects with a 99% success rate. Berkeley professor Ken Goldberg, postdoctoral researcher Jeff M... » read more

System Bits: May 30


Diamonds for quantum computing Quantum computers are experimental devices that offer large speedups on some computational problems, and one promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. At the same time, practical, diamond-based quantum computing devices will require the ability to position those defects at precise locations in com... » read more

← Older posts