What Works Best For Chiplets


The semiconductor industry is preparing for the migration from proprietary chiplet-based systems to a more open chiplet ecosystem, in which chiplets fabricated by different companies of various technologies and device nodes can be integrated in a single package with acceptable yield. To make this work as expected, the chip industry will have to solve a variety of well-documented technical an... » read more

Balancing AI And Engineering Expertise In The Fab


Modeling and simulation are playing increasingly critical roles in chip development due to tighter process specs, shrinking process windows, and fierce competition to bring technologies to market first. Before a new device makes it to high-volume manufacturing, there are countless engineering hours spent on developing the lithography, etching, deposition, CMP, and many other processes, at hi... » read more

Building Complex Chips That Last Longer


Semiconductor Engineering sat down to talk about design challenges in advanced packages and nodes with John Lee, vice president and general manager for semiconductors at Ansys; Shankar Krishnamoorthy, general manager of Synopsys' Design Group; Simon Burke, distinguished engineer at Xilinx; and Andrew Kahng, professor of CSE and ECE at UC San Diego. This discussion was held at the Ansys IDEAS co... » read more

Migrating 3D Into The Mainstream


Semiconductor Engineering sat down to discuss changes required throughout the ecosystem to support three-dimensional (3D) chip design with Norman Chang, chief technologist for ANSYS' Semiconductor Business Unit; John Park, product management director for IC packaging and cross-platform solutions at Cadence; John Ferguson, director of marketing for DRC applications at Mentor, a Siemens Business;... » read more

7nm Design Success Necessitates A Multi-Physics Approach


Whether you are designing an energy efficient mobile device, or an ADAS platform with stringent reliability requirements, or a high performance enterprise networking system, chips fabricated on advanced technologies such as 7-nanometer (nm) process and 2.5/3D or wafer level packaging can provide several advantages. Designs using these technologies consume less power while delivering higher thro... » read more

Design Convergence For 7nm Chips Needs Big Data-Driven Multi-Physics Optimization


Advancements in silicon process technologies are enabling companies to deliver products with faster performance, lower power and greater functionality. These benefits are especially attractive for chip manufacturers servicing markets such as high-end mobile and enterprise computing. However, the cost in terms of both dollars and resources associated with bringing 7-nanometer (nm) finFET-based s... » read more

How To Achieve Faster Design Convergence And A Better Design


We find ourselves at an interesting point in the evolution of semiconductor technologies electronic systems as a whole. As Moore’s Law continues to charge forward, tools and workflows continue to adapt to major trends, including: Increasing system design complexity; The increasing digital footprint of both design databases and simulation output data, and New architectures/More-than-Mo... » read more