Research Bits: Feb. 19


DNA assembly of 3D nanomaterials Scientists from Brookhaven National Laboratory, Columbia University, and Stony Brook University developed a method that uses DNA to instruct molecules to organize themselves into targeted 3D patterns and produce a wide variety of designed metallic and semiconductor 3D nanostructures. “We have been using DNA to program nanoscale materials for more than a de... » read more

Chip Industry Week In Review


By Jesse Allen, Gregory Haley, and Liz Allan Synopsys will acquire Ansys for about $35 billion in cash and stock. The deal will boost Synopsys' multi-physics simulation capabilities, which are essential for complex 3D-IC designs, where thermal density can have significant repercussions. The acquisition is expected to be finalized in the first half of 2025. Worldwide semiconductor revenue ... » read more

Research Bits: August 1


Thinner, tougher heat flux sensors Researchers from the Department of Physics at the University of Tokyo have designed a heat flux sensor that can measure heat flux — the amount of heat that passes through a material — using a manufacturable, flexible thin film with circuits etched in a way that increases the anomalous Nernst effect (ANE). ANE turns heat into an electrical signal using ... » read more

Chip Industry’s Technical Paper Roundup: Mar. 14


New technical papers recently added to Semiconductor Engineering’s library: [table id=86 /] If you have research papers you are trying to promote, we will review them to see if they are a good fit for our global audience. At a minimum, papers need to be well researched and documented, relevant to the semiconductor ecosystem, and free of marketing bias. There is no cost involved for us ... » read more

Large Area Synthesis of 2D Material Hexagonal Boron Nitride, Improving Device Characteristics of Graphene


A new technical paper titled "Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays" was published by researchers at Kyushu University, National Institute of Advanced Industrial Science and Technology (AIST), and Osaka University. Abstract "Multilayer hexagonal boron nitride (hBN) can be used to preserve the intrinsic physical properti... » read more

Research Bits: Nov. 15


Low temperature 3D bonding Scientists from Osaka University developed a new method for the direct three-dimensional bonding of copper electrodes using silver layers. The method works at low temperatures and does not require external pressure. "Our process can be performed under gentle conditions, at relatively low temperatures and without added pressure, but the bonds were able to withstand... » read more

Week In Review: Manufacturing, Test


New fab construction At an event in Arizona, U.S. Commerce Secretary Gina Raimondo urged states to compete for funding made available for producing semiconductors by the U.S. federal government. Indeed, several companies are already doing just that. The latest developments include: Micron plans to invest approximately $15 billion through 2030 for a new memory fab near its existing headquart... » read more

Technical Paper Round-up: May 3


New technical papers added to Semiconductor Engineering’s library this week. [table id=24 /] Semiconductor Engineering is in the process of building this library of research papers. Please send suggestions (via comments section below) for what else you’d like us to incorporate. If you have research papers you are trying to promote, we will review them to see if they are a good fit for... » read more

Pyrolyzed Cellulose Nanofiber Paper (CNP) Semiconductor with a 3D Network Structure


Abstract Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of... » read more

Power/Performance Bits: Dec. 21


Compact optical amplifier Researchers at Chalmers University of Technology propose a new optical amplifier design that is compact, high-performance, and doesn't generate excess noise. “We have developed the world's first optical amplifier that significantly enhances the range, sensitivity and performance of optical communication, that does not generate any excess noise – and is also com... » read more

← Older posts