Chip-Package Co-Analysis Using Ansys RedHawk-CPA


Ansys RedHawk-CPA is an integrated chip–package co-analysis solution that enables quick and accurate modeling of the package layout for inclusion in on-chip power integrity simulations using Ansys RedHawk. With RedHawk-CPA a designer can perform static IR drop analysis and AC hotspot analysis of the package layout following RedHawk static and dynamic analyses respectively. To ensure a reliab... » read more

Redefining The Power Delivery Network


Reliably getting power around a package containing multiple dies, potentially coming from multiple sources, or implemented in diverse technologies, is becoming much more difficult. The tools and needed to do this in an optimized manner are not all there today. Nevertheless, the industry is confident that we can get there. For a single die, the problem has evolved slowly over time. "For a ... » read more

Power Challenges In ML Processors


The design of artificial intelligence (AI) chips or machine learning (ML) systems requires that designers and architects use every trick in the book and then learn some new ones if they are to be successful. Call it style, call it architecture, there are some designs that are just better than others. When it comes to power, there are plenty of ways that small changes can make large differences.... » read more

Where Timing And Voltage Intersect


João Geada, chief technologist at ANSYS, talks about the limitations for power delivery networks and what processors can handle, why the current solutions to these issues are causing failures, and how voltage reduction can affect timing. » read more

Pushing Memory Harder


In an optimized system, no component is waiting for another component while there is useful work to be done. Unfortunately, this is not the case with the processor/memory interface. Put simply, memory cannot keep up. Accessing memory is slow, and it can consume a significant fraction of the power budget. And the general consensus is this problem is not going away anytime soon, despite effort... » read more

3D Power Delivery


Getting power into and around a chip is becoming a lot more difficult due to increasing power density, but 2.5D and 3D integration are pushing those problems to whole new levels. The problems may even be worse with new packaging approaches, such as chiplets, because they constrain how problems can be analyzed and solved. Add to that list issues around new fabrication technologies and an emph... » read more

Designing For Ultra-Low-Power IoT Devices


Optimizing designs for power is becoming the top design challenge in battery-driven IoT devices, boxed in by a combination of requirements such as low cost, minimum performance and functionality, as well as the need for at least some of the circuits to be always on. Power optimization is growing even more complicated as AI inferencing moves from the data center to the edge. Even simple sens... » read more

Blog Review: Oct. 24


Arm's Shidhartha Das digs into Power Delivery Networks with a look at how the specific roles of different components work to provide smooth supply conditions. In a video, VLSI Research's Dan Hutcheson chats with D2S CEO Aki Fujimura about the state of the photomask market, EUV optimism, and the most interesting findings from this year's eBeam Initiative survey. Synopsys' Prasad Subudhi K.... » read more

Power Delivery Affecting Performance At 7nm


Complex interactions and dependencies at 7nm and beyond can create unexpected performance drops in chips that cannot always be caught by signoff tools. This isn't for lack of effort. The amount of time spent trying to determine if an advanced-node chip will work after it is fabricated has been rising steadily for several process nodes. Additional design rules handle everything from variation... » read more

I Say ‘High’ [Performance], You Say ‘Low’ [Power]


“…You say ‘why’, and I say ‘I don’t know…’” Actually, I do know. Everybody loves a high-performance product. Even just hearing that a product is high-performance sets higher expectations than if the product is simply described as “fast” or “powerful.” When it comes to SoC design, “high-performance” refers to a set of designs that run at very high clock freque... » read more

← Older posts Newer posts →