Research Bits: Mar. 11


Ferroelectric nanosheets Engineers from the University of Sydney, RMIT University, University of New South Wales, and University of Technology Sydney created a liquid metal alloy of tin, zirconium, and hafnium. The alloy has a thin oxide layer crust that enables it to be used to harvest ultra-thin tin oxide nanosheets doped with hafnium zirconium oxide, which could then be 2D printed on a subs... » read more

FLEX 2023 Takeaways: Flexible And Printed Electronics Move Into Electronics Manufacturing


By Gity Samadi and Paul Semenza The FLEX Conference, held again this year in conjunction with SEMICON West 2023, provided numerous examples of continued developments in flexible, printed, and flexible hybrid electronics technologies applied to sensing, robotics, communications, and other applications. At the same time, there is growing focus on applying various additive manufacturing equipme... » read more

Split Additive Manufacturing for Printed Neuromorphic Circuits (Karlsruhe Institute of Technology)


A new technical paper titled "Split Additive Manufacturing for Printed Neuromorphic Circuits" was published by researchers at Karlsruher Institut für Technologie (KIT). Abstract: "Printed and flexible electronics promises smart devices for application domains, such as smart fast moving consumer goods and medical wearables, which are generally untouchable by conventional rigid silicon tech... » read more

Research Bits: May 2


Reconfigurable FeHEMT Researchers at the University of Michigan created a reconfigurable ferroelectric transistor that could enable a single amplifier to do the work of multiple conventional amplifiers. “By realizing this new type of transistor, it opens up the possibility for integrating multifunctional devices, such as reconfigurable transistors, filters and resonators, on the same plat... » read more

Research Bits: March 6


2D TMDs on silicon Engineers at MIT, University of Texas at Dallas, Institute for Basic Science, Sungkyunkwan University, Washington University in St. Louis, University of California at Riverside, ISAC Research, and Yonsei University found a way to grow 2D materials on industry-standard silicon wafers while preserving their crystalline form. Using a new “nonepitaxial, single-crystalline g... » read more

Printed Electronics: Direct Flipchip Bonding of Ultra-Thin Chip On A Recently-Developed Stretchable Substrate


A new technical paper titled "Flip chip bonding on stretchable printed substrates; the effects of stretchable material and chip encapsulation" was published by researchers at Silicon Austria Labs and Institute for Smart Systems Technologies. Abstract "Stretchable printed electronics have recently opened up new opportunities and applications, including soft robotics, electronic skins, human-... » read more

Research Bits: Jan. 3


Printing electronics on curved surfaces Researchers from North Carolina State University have demonstrated a new technique for directly printing electronic circuits onto curved and corrugated surfaces. They have used the technique to create prototype “smart” contact lenses, pressure-sensitive latex gloves, and transparent electrodes. “There are many existing techniques for creating pr... » read more

Research Bits: May 24


Printed flexible OLED display Researchers from the University of Minnesota Twin Cities and Korea Institute of Industrial Technology used a customized 3D printer to print a flexible OLED display. “OLED displays are usually produced in big, expensive, ultra-clean fabrication facilities,” said Michael McAlpine, a professor in the Department of Mechanical Engineering at University of Minnes... » read more

Screen Printed Chipless RFID Tags on Packaging Substrates


Abstract: "A chipless radio frequency identification (RFID) tag is a suitable low-cost alternative to any chip-based RFID one. The flexibility to use low-cost printing techniques makes chipless RFID a competitive technology. In this paper, we report an evaluation of the microwave performance of two different screen-printed chipless tags in the 3–6 GHz range. The tags were designed and scre... » read more

Dual Surface Architectonics for Directed Self‐Assembly of Ultrahigh‐Resolution Electronics


Abstract: "The directed self‐assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self‐assembly technologies is not sufficient for practical applications in the rapidly evolving addi... » read more

← Older posts