Chipping Away At Functional Safety Flaws In Automotive Electronics


Today’s automobiles are packed with electronics. From autonomous driving support and infotainment systems to mission-critical functions like braking, a car’s performance depends on the reliability of these electronics systems. While the semiconductors that lie at the heart of these systems have been not been a focus in the past, today their reliability is coming under closer scrutiny by bot... » read more

Smaller, Faster, Cheaper—But Different


The old mantra of "smaller, faster, cheaper" has migrated from the chip level to the electronic system level, raising some interesting questions about where the real value is being generated. Smaller as it pertains to gate size, line widths and spaces, will continue in an almost straight line for at least the next decade. The ability to print three-dimensional features on a nanoscale using E... » read more

Tech Talk: Automotive Design


NetSpeed Systems CEO Sundari Mitra talks about how to speed up the design of automotive chips. https://youtu.be/cus4fStDa5c » read more

Is Advanced Packaging The Next SoC?


Device scaling appears to be possible down to 1.2nm, and maybe even beyond that. What isn't obvious is when scaling will reach that node, how many companies will actually use it, or even what chips will look like when foundries actually start turning out these devices using multi-patterning with high-NA EUV and dielectrics with single-digit numbers of atoms. There are two big changes playing... » read more

Finding Faulty Auto Chips


The next wave of automotive chips for assisted and autonomous driving is fueling the development of new approaches in a critical field called outlier detection. KLA-Tencor, Optimal+, as well as Mentor, a Siemens Business, and others are entering or expanding their efforts in the outlier detection market or related fields. Used in various industries for several years, outlier detection is one... » read more

Looking At Test Differently


Wilhelm Radermacher, executive advisor at [getentity id="22816" e_name="Advantest"], sat down with Semiconductor Engineering to discuss how the impact of rapid market changes, advanced packaging approaches and increasing complexity on test strategies and equipment. What follows are excerpts of that conversation. SE: As we move into new markets where use models and stresses on devices are dif... » read more

Avoiding Down Times: Monitoring, Diagnostics And Troubleshooting Of Industrial Wireless Systems


The ever-growing proliferation of wireless devices and technologies used for Internet of Things (IoT) applications, such as patient monitoring, military surveillance, and industrial automation and control, has created an increasing need for methods and tools for connectivity prediction, information flow monitoring, and failure analysis to increase the dependability of the wireless network. Inde... » read more

Auto Chip Test Issues Grow


By Jeff Dorsch & Ed Sperling Semiconductor suppliers are flocking to the automotive chip market to gain share in fitting out the connected car and the autonomous vehicle. But before those chips are sold to automotive manufacturers and Tier 1 suppliers, they must be tested and certified to meet stringent industry standards. This is no ordinary testing, though. Assisted and autonomous v... » read more

How Good Is 95% Accuracy?


Conventional, deterministic computers don’t make mistakes. They execute a predictable series of computations in response to any given input. The input might be mistaken. The logic behind the operations that are performed might be flawed. But the computer will always do exactly what it has been told to do. When unexpected results occur, they can be attributed to the programmer, the system manu... » read more

The Trouble With Models


Models are becoming more difficult to develop, integrate and utilize effectively at 10/7nm and beyond as design complexity, process variation and physical effects add to the number of variables that need to be taken into account. Modeling is a way of abstracting the complexity in various parts of the semiconductor design, and there can be dozens of models required for complex SoCs. Some are ... » read more

← Older posts