Why EUV Is So Difficult


For years, extreme ultraviolet (EUV) lithography has been a promising technology that was supposed to help enable advanced chip scaling. But after years of R&D, EUV is still not in production despite major backing from the industry, vast resources and billions of dollars in funding. More recently, though, [gettech id="31045" comment="EUV"] lithography appears to be inching closer to pos... » read more

Atomic Layer Etch Heats Up


The atomic layer etch (ALE) market is starting to heat up as chipmakers push to 10nm and beyond. ALE is a promising next-generation etch technology that has been in R&D for the last several years, but until now there has been little or no need to use it. Unlike conventional etch tools, which remove materials on a continuous basis, ALE promises to selectively and precisely remove targete... » read more

What Happened To DSA?


Directed self-assembly (DSA) was until recently a rising star in the next-generation lithography (NGL) landscape, but the technology has recently lost some of its luster, if not its momentum. So what happened? Nearly five years ago, an obscure patterning technology called [gettech id="31046" t_name="DSA"] burst onto the scene and began to generate momentum in the industry. At about that t... » read more

Where Is Next-Gen Lithography?


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Greg McIntyre, director of the Advanced Patterning Department at [getentity id="22217" comment="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Uday Mitra, vice president and head of strategy and marketing for the Etch Bu... » read more

Where Is Next-Gen Lithography?


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Greg McIntyre, director of the Advanced Patterning Department at [getentity id="22217" comment="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Uday Mitra, vice president and head of strategy and marketing for the Etch Bu... » read more

Will Directed Self-Assembly Pattern 14nm DRAM?


Will directed self-assembly (DSA) join Extreme Ultraviolet (EUV) Lithography and next-generation multi-patterning techniques to pattern the next memory and logic technologies? Appealing to the wisdom of crowds, the organizers of the 2015 1st International DSA symposium recently surveyed the attendees. Nearly 75% believed DSA would insert into high-volume manufacturing within the next 5 years... » read more

7nm Lithography Choices


Chipmakers are ramping up their 16nm/14nm logic processes, with 10nm expected to move into early production later this year. Barring a major breakthrough in lithography, chipmakers are using today’s 193nm immersion and multiple patterning for both 16/14nm and 10nm. Now, chipmakers are focusing on the lithography options for 7nm. For this, they hope to use a combination of two technologies ... » read more

5nm Fab Challenges


At a recent event, Intel presented a paper that generated sparks and fueled speculation regarding the future direction of the leading-edge IC industry. The company described a next-generation transistor called the nanowire FET, which is a finFET turned on its side with a gate wrapped around it. Intel’s nanowire FET, sometimes called a gate-all-around FET, is said to meet the device req... » read more

Inside Multi-Beam E-Beam Lithography


Semiconductor Engineering sat down with David Lam, chairman of Multibeam, a developer of multi-beam e-beam tools for direct-write lithography applications. Lam is also a venture capitalist. He founded Lam Research in 1980, but left as an employee in 1985. What follows are excerpts of that conversation. SE: How has the equipment business changed over the years and what’s the state of the i... » read more

ALD Market Heats Up


Amid the shift to 3D NAND, finFETs and other device architectures, the atomic layer deposition (ALD) market is heating up on several fronts. Applied Materials, for example, recently moved to shakeup the landscape by rolling out a new, high-throughput ALD tool. Generally, [getkc id="250" kc_name="ALD"] is a process that deposits materials layer-by-layer at the atomic level, enabling thin and ... » read more

← Older posts