Photoresist Shape In 3D


Things were easy for integrators when the pattern they had on the mask ended up being the pattern they wanted on the chip. Multi-patterning schemes such as Self-Aligned Double Patterning (SADP) and Self-Aligned Quadruple Patterning (SAQP) have changed that dramatically. Now, what you have on the mask determines only a part of what you will get at the end. You will only obtain your final product... » read more

Understanding How Small Variations In Photoresist Shape Significantly Impact Multi-Patterning Yield


Multi-patterning schemes such as Self-Aligned Double Patterning (SADP) and Self-Aligned Quadruple Patterning (SAQP) have been used to successfully increase semiconductor device density, circumventing prior physical limits in pattern density. However, the number of processing steps needed in these patterning schemes can make it difficult to directly translate a lithographic mask pattern to a fin... » read more

Patterning Problems Pile Up


Chipmakers are ramping up 16nm/14nm finFET processes, with 10nm and 7nm now moving into early production. But at 10nm and beyond, chipmakers are running into a new set of problems. While shrinking feature sizes of a device down to 10nm, 7nm, 5nm and perhaps beyond is possible using current and future fab equipment, there doesn't seem to be a simple way to solve the edge placement error (EPE)... » read more

Inside Lithography And Masks


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; David Fried, chief technology officer at [getentity id="22210" e_name="Cove... » read more

Optimizing DRAM Development Using Directed Self-Assembly (DSA)


Directed Self-Assembly (DSA) is an emerging technology that has the ability to substantially improve lithographic manufacturing of semiconductor devices. In DSA, copolymer materials self-assemble to form nanoscale resolution patterns on the semiconductor substrate. DSA technologies hold the promise to substantially improve the resolution of existing lithographic processes (such as self-aligned ... » read more

Battling Fab Cycle Times


The shift from planar devices to finFETs enables chipmakers to scale their processes and devices from 16nm/14nm and beyond, but the industry faces several challenges at each node. Cost and technical issues are the obvious challenges. In addition, cycle time—a key but less publicized part of the chip-scaling equation—also is increasing at every turn, creating more angst for chipmakers and... » read more

BEOL Issues At 10nm And 7nm


Semiconductor Engineering sat down to discuss problems with the back end of line at leading-edge nodes with Craig Child, senior manager and deputy director for [getentity id="22819" e_name="GlobalFoundries'"] advanced technology development integration unit; Paul Besser, senior technology director at [getentity id="22820" comment="Lam Research"]; David Fried, CTO at [getentity id="22210" e_name... » read more

Inside Advanced Patterning


Prabu Raja, group vice president and general manager for the Patterning and Packaging Group at [getentity id="22817" e_name="Applied Materials"], sat down with Semiconductor Engineering to discuss the trends in patterning, selective processes and other topics. Raja is also a fellow at Applied Materials. What follows are excerpts of that conversion. SE: From your standpoint, what are the big... » read more

Why EUV Is So Difficult


For years, extreme ultraviolet (EUV) lithography has been a promising technology that was supposed to help enable advanced chip scaling. But after years of R&D, EUV is still not in production despite major backing from the industry, vast resources and billions of dollars in funding. More recently, though, [gettech id="31045" comment="EUV"] lithography appears to be inching closer to pos... » read more

Atomic Layer Etch Heats Up


The atomic layer etch (ALE) market is starting to heat up as chipmakers push to 10nm and beyond. ALE is a promising next-generation etch technology that has been in R&D for the last several years, but until now there has been little or no need to use it. Unlike conventional etch tools, which remove materials on a continuous basis, ALE promises to selectively and precisely remove targete... » read more

← Older posts