Enabling New Applications With SiC IGBT And GaN HEMT For Power Module Design


The need to mitigate climate change is driving a need to electrify our infrastructure, vehicles, and appliances, which can then be charged and powered by renewable energy sources. The most visible and impactful electrification is now under way for electric vehicles (EVs). Beyond the transition to electric engines, several new features and technologies are driving the electrification of vehicles... » read more

Using Picosecond Ultrasonics To Measure Trench Structures In SiC Power Devices


The road to the future is not always a smooth, trouble-free drive. Along the way, there may be unforeseen detours, potholes and accidents, each one capable of setting progress back. But for those behind the wheel, those obstacles are just a part of the journey. Such is the case for the automotive industry as it continues to steer away from gas-powered vehicles and turn toward hybrid and elec... » read more

Optimized Drivetrain And New Semiconductor Technologies Enable The Design Of Energy-Efficient Electric Vehicles


The traction inverter is the core component of the drivetrain in all-electric vehicles, making it the most essential system: The device plays a crucial role in enabling efficient and sustainable electromobility since it directly influences the power output and significantly affects the vehicle’s dynamics. However, to develop efficient electric vehicles the integration of complementary sub... » read more

Using OCD To Measure Trench Structures In SiC Power Devices


You don’t have to be a dedicated follower of the transportation industry to know it is in the early stages of a significant transition, away from the rumbling internal combustion engine to the quiet days of electric vehicles. The signs of this transition are right there on the streets in the form of electric-powered buses, bikes and cars. The road to our electric future is before us, but we w... » read more

Why Is The Power Device Market So Hot Right Now?


Growing adoption of electric vehicles (EVs) and renewable energy sources is putting the spotlight on power semiconductor devices. These power devices have always been essential in determining the efficiency of a variety of systems, from small household electronics to equipment used in outer space. But as calls to reduce carbon emissions get louder, the market for these chips continues to flouri... » read more

Using TCAD To Simulate Wide-Bandgap Materials For Electronics Design


Wide-bandgap (WBG) semiconductors are a class of materials that can offer a range of advantages over silicon. These materials can operate at higher voltages and higher temperatures, serving as critical enablers of innovation in Power and RF applications and functioning in a wider range of environments that are sometimes extreme. Electronics applications benefit from these wide-bandgap materials... » read more

Properties Of The State-Of-The-Art Commercially Available SiC and GaN Power Transistors


A technical paper titled “Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives” was published by researchers at University of Padova. Abstract: "We present a comprehensive review and outlook of silicon carbide (SiC) and gallium nitride (GaN) transistors available on the market for current and next-generation power electronics. Materi... » read more

Application-Oriented Testing Of SiC Power Semiconductors


SiC (silicon carbide) has established itself as an important material in the semiconductor market because it has many outstanding properties. In comparison with silicon, SiC offers a higher electrical breakdown voltage, resulting in improved component performance and efficiency. It also allows for operation at higher temperatures, which makes heat dissipation easier and enables improved perform... » read more

Using FTIR To Improve SiC Power Device Performance


The figures alone are impressive: SiC power devices are experiencing an annual average growth rate approaching 34% through 2027, according to the Yole Group. However, the potential for this amongst other compound semiconductor-based power devices such as gallium nitride (GaN) to change the world around us is even more impressive. Thanks to the role that SiC-based devices play in the increase... » read more

Big Shifts In Power Electronics Packaging


The power semiconductor market is poised for remarkable growth in the next several years, fueled by the adoption of electric vehicles and renewable energy, but it also driving big changes in the packaging needed to protect and connect these devices. Packaging is playing an increasingly critical role in the transition to higher power densities, enabling more efficient power supplies, power deli... » read more

← Older posts