Power Modeling and Analysis


Semiconductor Engineering sat down to discuss power modeling and analysis with [getperson id="11489" p_name="Drew Wingard"], chief technology officer at [getentity id="22605" e_name="Sonics"]; [getperson id="11763" comment="Tobias Bjerregaard"], chief executive officer for [getentity id="22908" e_name="Teklatech"]; Vic Kulkarni, vice president and chief strategy officer at [getentity id="22021"... » read more

Frenzy At 10/7nm


The number of chipmakers rushing to 10/7nm is rising, despite a slowdown in Moore's Law scaling and the increased difficulty and cost of developing chips at the most advanced nodes. How long this trend continues remains to be seen. It's likely that 7/5nm will require new manufacturing equipment, tools, materials and transistor structures. Beyond that, there is no industry-accepted roadmap, m... » read more

Multi-Physics Combats Commoditization


The semiconductor industry has benefited greatly from developments around digital circuitry. Circuits have grown in size from a few logic gates in the 1980s to well over 1 billion today. In comparison, analog circuits have increased in size by a factor of 10. The primary reason is that digital logic managed to isolate many of the physical effects from functionality, and to provide abstractions ... » read more

Power Modeling And Analysis


Semiconductor Engineering sat down to discuss power modeling and analysis with [getperson id="11489" p_name="Drew Wingard"], chief technology officer at [getentity id="22605" e_name="Sonics"]; [getperson id="11763" comment="Tobias Bjerregaard"], CEO for [getentity id="22908" e_name="Teklatech"]; Vic Kulkarni, vice president and chief strategy officer at [getentity id="22021" e_name="ANSYS"]; An... » read more

Is 7nm The Last Major Node?


A growing number of design and manufacturing issues are prompting questions about what scaling will really look like beyond 10/7nm, how many companies will be involved, and which markets they will address. At the very least, node migrations will go horizontally before proceeding numerically. There are expected to be more significant improvements at 7nm than at any previous node, so rather th... » read more

Dealing With System-Level Power


Analyzing and managing power at the system level is becoming more difficult and more important—and slow to catch on. There are several reasons for this. First, design automation tools have lagged behind an understanding of what needs to be done. Second, modeling languages and standards are still in flux, and what exists today is considered inadequate. And third, while system-level power ha... » read more

The Week In Review: Design


M&A Verific acquired Invionics' entire INVIO technology portfolio, adding a high-level scripting interface with 100 high-level APIs to its Parser Platform of approximately 2,000 low-level SystemVerilog and VHDL APIs. An R&D group from the company will also join Verific. Portable Stimulus An Early Adopter release of the Portable Stimulus specification has been made publicly availabl... » read more

Transient Power Problems Rising


Transient power is becoming much more problematic at 10/7nm, adding yet another level of complexity for design teams already wrestling with power issues caused by leakage, a variety of power management techniques to control dynamic power, and leakage current. At each new node there is less headroom for engineering teams to address these problems, and more likelihood that what they do in one ... » read more

Power Challenges At 10nm And Below


Current density is becoming much more problematic at 10nm and beyond, increasing the amount of power management that needs to be incorporated into each chip and boosting both design costs and time to market. Current per unit of area has been rising since 90nm, forcing design teams to leverage a number of power-related strategies such as [getkc id="143" kc_name="dynamic voltage and frequency... » read more

The Problem With Clocks


The synchronous digital design paradigm has enabled us to design circuits that are well controlled, but that is only true if the clocks themselves are well controlled. While overdesign techniques ensured that to be the case in early ASIC development, designs today cannot afford such luxuries. As we strive for lower power and higher operating frequencies, the clock has become a critical desig... » read more

← Older posts