What Can Be Cut From A Design?


A long-standing approach of throwing everything into a chip increasingly is being replaced by a focus on what can be left out it. This shift is happening at every level, from the initial design to implementation. After years of trying to fill every square nanometer of real estate on a piece of silicon with memory and logic, doubling the number of [getkc id="26" kc_name="transistors"] from on... » read more

Routing Signals At 7nm


[getperson id="11763" comment="Tobias Bjerregaard"], [getentity id="22908" e_name="Teklatech's"] CEO, discusses the challenges of designs at 7nm and beyond, how to reduce IR drop and timing issues, and how to improve the economics of scaling. SE: How much further can device scaling go? Bjerregaard: The way you should look at this is [getkc id="74" comment="Moore's Law"] provides some valu... » read more

Mobile Processors Move Beyond Phones


Mobile processors, also known as application processors, are well-known as the engines that run smartphones, tablet computers, and other wireless devices. But these chips increasingly are finding their way into autonomous vehicles, the Internet of Things, unmanned aerial vehicles, virtual reality, and other applications far beyond phone calls and text messages. Moreover, they are gaining in com... » read more

Dynamic Peak Power As A Proxy For DVD? Really?


Dynamic-voltage-drop (DVD) concerns have grown substantially at the 10nm and 7nm silicon process nodes. DVD refers to the transient voltage drop that a local power grid on a chip might experience if there is a rapid change in current. That drop can act like a “stall,” hurting performance until the grid recovers. Beefing up the power grid metal might seem to be the obvious fix, but, at th... » read more

The Time Dimension Of Power


Power is the flow of energy over time. While both aspects of that equation are important, they are important to different people in different ways. Energy that moves too quickly can cause significant damage. Too much energy moving over time can mean a non-competitive product, from battery-powered devices to a wide array of locations such as the datacenter. When the industry talks about power... » read more

Closing The Power Integrity Gap


Voltage drop has always been a significant challenge. As far back as 130nm, specialist tools were being used to ensure that enough local decoupling capacitance (decap) cells were inserted in addition to larger decaps implemented around the SoC. But advanced nodes are complicating matters and further increasing complexity. These technological challenges, which underlie the power, performance ... » read more

Betting On Power And Deep Learning


Jim Hogan, managing partner of Vista Ventures, sat down with Semiconductor Engineering to talk about what investments deliver the biggest returns, how quickly, and why there are so few investors in some big growth areas. What follows are excerpts of that conversation. SE: What are you investing in these days and why? Hogan: I have about 15 active deals right now. I generally invest in thi... » read more

Getting The Power/Performance Ratio Right


Getting to market quickly means determining as soon as possible if a concept for a new design will work or not, particularly where power and performance are concerned. Making this determination requires intimate knowledge of the scenarios in which the device will operate — and that is just the start. In order to set things up, you need to somehow model the system, which could be done in a ... » read more

Focus Shifts To Architectures


Chipmakers increasingly are relying on architectural and micro-architectural changes as the best hope for improving power and performance across a spectrum of markets, process nodes and price points. While discussion about the death of [getkc id="74" comment="Moore's Law"] predates the 1-micron process node, there is no question that it is getting harder for even the largest chipmakers to st... » read more

Hitting The Power Integrity Wall At 10nm


At 10nm and beyond, the breakdown of some historic trends tied to Moore's Law is making it harder to fully harvest the benefits of scaling semiconductor technologies. Underlying the power, performance and area benefits of scaling are technological challenges that must be solved in order to make the semiconductor products a profitable business. Power-related challenges are among the most pres... » read more

← Older posts