Pathfinding Beyond FinFETs


Though the industry will likely continue to find ways to extend CMOS finFET technology further than we thought possible, at some point in the not-so-distant future, making faster, lower power ICs will require more disruptive changes. For something that could be only five to seven years out, there’s a daunting range of contending technologies. Improvements through the process will help, from E... » read more

Power/Performance Bits: Dec. 8


Reducing transistor switching power One of the great challenges in electronics has been to reduce power consumption during transistor switching operation. However, engineers at University of California, Santa Barbara, and Rice University demonstrated a new transistor that switches at only 0.1 volts and reduces power dissipation by over 90% compared to state-of-the-art MOSFETs. "The steepn... » read more

Raise A Fence, Dig A Tunnel, Build A Bridge


There are three main options for chipmakers over the course of the next decade. Which option they choose depends upon their individual needs, talents, and how much and what kind of differentiation they believe will matter to them. The options roughly fall into three categories—fence, bridge or tunnel. The fence option Rather than changing anything, the entire ecosystem can stick to wha... » read more

What’s After 10nm?


Prior to 28nm the semiconductor road map was astoundingly predictable. Every two years you could be assured that features would shrink until there were no more atoms left. Two big things and lots of little things later, the trajectory looks much more uncertain. On the large things side are the obvious culprits—EUV delays, and RC delay caused by thinner wires. This is tough science. Pro... » read more

One-On-One: Aaron Thean


Semiconductor Engineering sat down to discuss process technology, transistor trends and other topics with Aaron Thean, vice president of process technologies and director of the logic devices R&D program at Imec. SE: Chipmakers are ramping up the 16nm/14nm logic node, with 10nm and 7nm in R&D. What’s the current timeline for 10nm and 7nm? Thean: 10nm is on its way. We will see r... » read more

Transistor Options Narrow For 7nm


Chipmakers are currently ramping up silicon-based finFETs at the 16nm/14nm node, with plans to scale the same technology to 10nm. Now, the industry is focusing on the transistor options for 7nm and beyond. At one time, the leading contenders involved several next-generation transistor types. At present, the industry is narrowing down the options and one technology is taking a surprising lea... » read more

Power Moves Up To First Place


Virtually every presentation delivered about semiconductor design or manufacturing these days—and every end product specification that uses advanced technology—incorporates some reference to power and/or energy. It has emerged as the most persistent, most problematic, and certainly the most talked about issue from conception to marketplace adoption. And the conversation only grows louder... » read more

The Search For The Next Transistor


In the near term, the leading-edge chip roadmap looks fairly clear. Chips based on today’s finFETs and planar fully depleted silicon-on-insulator (FDSOI) technologies are expected to scale down to the 10nm node. But then, the CMOS roadmap becomes foggy at 7nm and beyond. The industry has been exploring a number of next-generation transistor candidates, but suddenly, a few technologies are ... » read more

What’s After CMOS?


Chipmakers continue to scale the CMOS transistor to finer geometries, but the question is for how much longer. The current thinking is that the CMOS transistor could scale at least to the 3nm node in the 2021 timeframe. And then, CMOS could run out of gas, prompting the need for a new switch technology. So what’s after the CMOS-based transistor? Carbon nanotubes and graphene get the most a... » read more

Manufacturing Bits: Jan. 7


Climbing Terminator Robots Simon Fraser University has developed a family of climbing robots that mimic the stickiness of gecko lizard feet. Based on a “footpad terminator” adhesive technology, the robots could be used in space missions and on Earth. The climbing robot, called Abigaille, features six legs. This allows the robots to crawl on vertical and horizontal structures. The techno... » read more

← Older posts