2.5D, Fan-Out Inspection Issues Grow


As advanced packaging moves into the mainstream, packaging houses and equipment makers are ratcheting up efforts to solve persistent metrology and inspection issues. The goal is to lower the cost of fan-outs, [getkc id="82" kc_name="2.5D"] and [getkc id="42" kc_name="3D-IC"], along with a number of other packaging variants consistent with the kinds of gains that are normally associated with Moo... » read more

Wirebond Technology Rolls On


Several years ago, many predicted the demise of an older interconnect packaging technology called wire bonding, prompting the need for more advanced packaging types. Those predictions were wrong. The semiconductor industry today uses several advanced packaging types, but wire bonding has been reinvented over the years and remains the workhorse in packaging. For example, Advanced Semiconducto... » read more

Intel Inside The Package


Mark Bohr, senior fellow and director of process architecture and integration at Intel, sat down with Semiconductor Engineering to discuss the growing importance of multi-chip integration in a package, the growing emphasis on heterogeneity, and what to expect at 7nm and 5nm. What follows are excerpts of that interview. SE: There’s a move toward more heterogeneity in designs. Intel clearly ... » read more

Electroplating IC Packages


The electrochemical deposition (ECD) equipment market for IC packaging is heating up as 2.5D, 3D and fan-out technologies begin to ramp. [getentity id="22817" e_name="Applied Materials"]  recently rolled out an ECD system for IC packaging. In addition, Lam Research, TEL and others compete in the growing but competitive ECD equipment market for packaging. ECD—sometimes referred to as pl... » read more

2.5D Adds Test Challenges


OSATs and ATE vendors are making progress in determining what works and what doesn't in 2.5D packaging, expanding their knowledge base as this evolves into a mainstream technology. A [getkc id="82" kc_name="2.5D"] package generally includes an ASIC connected to a stack of memory chips—usually high-bandwidth memory—using an [getkc id="204" kc_name="interposer"] or some type of silicon bri... » read more

Changing Direction In Chip Design


Andrzej Strojwas, chief technologist at PDF Solutions and professor of electrical and computer engineering at Carnegie Mellon University—and the winner of this year's Phil Kaufman Award for distinguished contributions to EDA—sat down with Semiconductor Engineering to talk about device scaling, why the semiconductor industry will begin to fragment around new architectures and packaging, and ... » read more

Overcoming The Limits Of Scaling


Semiconductor Engineering sat down to discuss the increasing reliance on architectural choices for improvements in power, performance and area, with [getperson id="11425" comment=" Sundari Mitra"], CEO of [getentity id="22535" comment="NetSpeed Systems"]; Charlie Janac, chairman and CEO of [getentity id="22674" e_name="Arteris"]; [getperson id="11032" comment="Simon Davidmann"] CEO of [getentit... » read more

Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. ... » read more

Stacked Die Changes


Semiconductor Engineering sat down to discuss advanced packaging with David Pan, associate professor in the department of electrical and computer engineering at the University of Texas; Max Min, senior technical manager at [getentity id="22865" e_name="Samsung"]; John Hunt, senior director of engineering at ASE; and Sitaram Arkalgud, vice president of 3D portfolio and technologies at Invensas. ... » read more

Designing SoC Power Networks


Designing a power network for a complex SoC is becoming critical for the success of the product, but most chips are still using old techniques that are ill-suited to the latest fabrication technologies, resulting in an expensive, overdesigned product. Not only is the power network as designed too large, but this has several knock-on effects that impact area, timing and power. In the first pa... » read more

← Older posts