Power/Performance Bits: May 31


Solar thermophotovoltaics A team of MIT researchers demonstrated a device based on a method that enables solar cells to break through a theoretically predicted ceiling on how much sunlight they can convert into electricity. Since 1961 it has been known that there is an absolute theoretical limit, called the Shockley-Queisser Limit, to how efficient traditional solar cells can be in their ... » read more

Power/Performance Bits: May 24


Reducing MRAM chip area Researchers from Tohoku University developed a technology to stack magnetic tunnel junctions (MTJ) directly on the via without causing deterioration to its electric/magnetic characteristics. The team focused on reducing the memory cell area of spin-transfer torque magnetic random access memory (STT-MRAM) in order to lower manufacturing costs, making them more compe... » read more

Manufacturing Bits: Jan. 12


World’s smallest magnet The University of Tokyo has developed what researchers claim is the world's smallest nano-magnet. The nano-size ferrite magnet consists of iron oxide. With the material, researches devised a 7.5nm structure with magnetic properties. [caption id="attachment_24751" align="alignleft" width="300"] Charting the world's smallest magnet (Source: Shin-ichi Ohkoshi)[/ca... » read more

Manufacturing Bits: Nov. 10


Etching superconducting materials Superconductors are devices that have zero electrical resistance, making them attractive for a range of applications. But superconductors must be cooled down to temperatures at or near absolute zero on the Kelvin scale to work. This, in turn, limits their applications. Absolute zero equates to −273.15° on the Celsius scale and −459.67° on the Fahrenheit ... » read more

System Bits: Oct. 21


Simplified superconducting circuits Computer chips with superconducting circuits, which means they have no electrical resistance, are said to be 50 to 100 times as energy-efficient as today’s technology. Superconducting chips are also said to have greater processing power: Superconducting circuits that use so-called Josephson junctions have been clocked at 770 gigahertz, or 500 times the spe... » read more