Power/Performance Bits: Oct. 25

Energy-harvesting floor Engineers at the University of Wisconsin-Madison developed a flooring material which can be used as a triboelectric nanogenerator to convert footsteps into electricity. The method uses wood pulp, a common waste material already often used in flooring. The pulp is partly make of cellulose nanofibers, which when chemically treated produce an electrical charge when th... » read more

System Bits: Oct. 11

Carbon Is So 2015 Researchers at MIT have created a supercapacitor that relies on a material other than carbon. This new class of materials, called metal-organic frameworks (MOFs), are a porous and sponge-like, according to MIT, tthereby providing a much larger surface area than carbon. As with most things electrical, more surface area is essential for superconductors. The problem the re... » read more

System Bits: Sept. 20

Improving Torque Sensing In an advance that could bring new types of sensors and studies in quantum mechanics, Purdue University researchers have levitated a tiny nanodiamond particle with a laser in a vacuum chamber, using the technique for the first time to detect and measure its torsional vibration. The team said the experiment represents a nanoscale version of the torsion balance used i... » read more

Cluster Scalability Of ANSYS Fluent 12.0 For A Large Aerodynamics Case On The Darwin Supercomputer

This work examines the parallel scalability characteristics of commercial CFD software ANSYS FLUENT 12 for up to 256 processing cores, for transient CFD simulations that are heavy in I/O relative to numerical operations. In studies conducted with engineering contributions from the University of Cambridge and ANSYS, the Linux HPC environment named Darwin combined an Intel Xeon cluster with a P... » read more

Power/Performance Bits: Aug. 9

Phase-change memory Researchers at Stanford are working on phase-change memory technology, which could deliver the best of volatile and non-volatile memory. Phase-change materials can exist in two different atomic structures, each of which has a different electronic state. A crystalline, or ordered, atomic structure, permits the flow of electrons, while an amorphous, or disordered, struct... » read more

System Bits: Aug. 2

Helping drones navigate urban environments While it has been widely discussed, Amazon wants to start using drones to deliver packages by 2017, but if you live in a high-rise apartment, you might be waiting a bit longer because because UAVs (Unmanned Aerial Vehicles) use GPS for localization and navigation but in urban areas, high-rise buildings may block the line of sight to GPS satellites, ca... » read more

System Bits: June 21

Faster running parallel programs, one-tenth the code MIT researchers reminded that computer chips have stopped getting faster and that for the past 10 years, performance improvements have come from the addition of cores. In theory, they said, a program on a 64-core machine would be 64 times as fast as it would be on a single-core machine but it rarely works out that way. Most computer programs... » read more

Manufacturing Bits: May 31

Superconducting magnets The National High Magnetic Field Laboratory (MagLab) has broken another world’s magnet record. This time, MagLab broke a record for a high-temperature superconducting (HTS) coil operating inside a high-field resistive magnet. With the technology, the agency achieved a magnetic field of 40.2 teslas. The previous record was 35.4 teslas. Tesla, or T, is the measuremen... » read more

System Bits: April 12

Highly aligned, wafer-scale films Rice University researchers, with support from Los Alamos National Laboratory, have created inch-wide, flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes with the help of a simple filtration process. The chirality-enriched single-walled carbon nanotubes assemble themselves by the millions into long rows that are aligned better... » read more

Power/Performance Bits: March 29

Photonic-phononic circuit Researchers at the National Institute of Standards and Technology (NIST) developed a piezo-optomechanical circuit that converts signals among optical, acoustic and radio waves. At the heart of the piezoelectric optomechanical circuit is an optomechanical cavity, which consists of a suspended nanoscale beam. Within the beam are a series of holes that act like a ha... » read more

← Older posts