Power Modeling and Analysis


Semiconductor Engineering sat down to discuss power modeling and analysis with [getperson id="11489" p_name="Drew Wingard"], chief technology officer at [getentity id="22605" e_name="Sonics"]; [getperson id="11763" comment="Tobias Bjerregaard"], chief executive officer for [getentity id="22908" e_name="Teklatech"]; Vic Kulkarni, vice president and chief strategy officer at [getentity id="22021"... » read more

UPF Power Domains And Boundaries


The Universal Power Format (UPF) plays a central role in mitigating dynamic and static power in the battle for low-power in advanced process technology. A higher process node is definitely attractive as more functionality integration is possible in a smaller die area at a lower cost. However, in reality, this comes at the cost of exponentially increasing leakage power. This is because the minim... » read more

Dealing With System-Level Power


Analyzing and managing power at the system level is becoming more difficult and more important—and slow to catch on. There are several reasons for this. First, design automation tools have lagged behind an understanding of what needs to be done. Second, modeling languages and standards are still in flux, and what exists today is considered inadequate. And third, while system-level power ha... » read more

Verification Unification


Semiconductor Engineering brought together industry luminaries to initiate the discussion about the role that formal technologies will play with the recently released early adopter's draft of Portable Stimulus and how it may help to bring the two execution technologies closer together. Participating in this roundtable are Joe Hupcey, verification product technologist for [getentity id="22017" e... » read more

Libraries: Standardization and Requirements For Power-Aware Dynamic Simulation


INTRODUCTION Multivoltage (MV) based power-aware (PA) design verification and implementation methodologies requires special power management attributes in libraries for standard, MV and Macro cells for two distinctive reason. The first aspect is to provide power and ground (also bias) supply or PG-pin information, which is mandatory for PA verification. The second reason is to provide a distin... » read more

Closing The Loop On Power Optimization


[getkc id="108" kc_name="Power"] has become a significant limiter for the capabilities of a chip at finer geometries, and making sure that performance is maximized for a given amount of power is becoming a critical design issue. But that is easier said than done, and the tools and methodologies to overcome the limitations of power are still in the early definition stages. The problem spans a... » read more

Working With Custom Checkers In Dynamic Simulation Of Low Power Designs


Power-aware simulators can provide a wide range of automated assertions in the form of dynamic sequence checkers that cover every possible PA dynamic verification scenario. However, design specific PA verification complexities may arise from adoption of one or a multiple of power dissipation reduction techniques, from a multitude of design features — like UPF strategies — as well as from ta... » read more

Could DVCon Be Better?


DVCon is undoubtedly the best conference in the industry if your interest is functional verification. In the past, it has also had a slant toward design. The focus is quite simply based on the standards activity going on within [getentity id="22028" e_name="Accellera"], the EDA industry's body that turns problems into solution in a short space of time. As those standards mature, they are handed... » read more

2017: Tool And Methodology Shifts


As the markets for semiconductor products evolve, so do the tools that enable automation, optimization and verification. While tools rarely go away, they do bend like plants toward light. Today, it is no longer the mobile phone industry that is defining the direction, but automotive and the Internet of Things (IoT). Both of these markets have very different requirements and each creates their o... » read more

Power Management Vs. State Machines


In the last several years, contemporary SoCs (systems-on-a-chip) have become very complex silicon solutions. They now consist of hundreds of millions of gates, 100 or more discrete Semiconductor Intellectual Property (SIP) blocks, high-speed data channels, megabytes of volatile and non-volatile embedded memory, increasing amounts of analog/mixed signal functionality, multiple CPU cores and mult... » read more

← Older posts