The Role Of EDA In AI


Semiconductor Engineering sat down to discuss the role that EDA has in automating artificial intelligence and machine learning with Doug Letcher, president and CEO of Metrics; Daniel Hansson, CEO of Verifyter; Harry Foster, chief scientist verification for Mentor, a Siemens Business; Larry Melling, product management director for Cadence; Manish Pandey, Synopsys fellow; and Raik Brinkmann, CEO ... » read more

From AI Algorithm To Implementation


Semiconductor Engineering sat down to discuss the role that EDA has in automating artificial intelligence and machine learning with Doug Letcher, president and CEO of Metrics; Daniel Hansson, CEO of Verifyter; Harry Foster, chief scientist verification for Mentor, a Siemens Business; Larry Melling, product management director for Cadence; Manish Pandey, Synopsys fellow; and Raik Brinkmann, CEO ... » read more

Big Shift In Multi-Core Design


Hardware and software engineers have a long history of working independently of each other, but that insular behavior is changing in emerging areas such as AI, machine learning and automotive as the emphasis shifts to the system level. As these new markets consume more semiconductor content, they are having a big impact on the overall design process. The starting point in many of these desig... » read more

Heterogeneous Design Creating Havoc With Firmware Versions


Adding different kinds of processing elements into chips is creating system-level incompatibilities because of sometimes necessary, but usually uncoordinated, firmware updates from multiple vendors. In the past, firmware typically was synchronized with other firmware and the chip was verified and debugged. But this becomes much more difficult when multiple heterogeneous processing elements a... » read more

Digital Twins Deciphered


Ever since Siemens acquired Mentor Graphics in 2016, a new phrase has become more common in the semiconductor industry – the digital twin. Exactly what that is, and what impact it will have on the semiconductor industry, is less clear. In fact, many in the industry are scratching their heads over the term. The initial reaction is that the industry has been creating what are now termed digi... » read more

Utilizing More Data To Improve Chip Design


Just about every step of the IC tool flow generates some amount of data. But certain steps generate a mind-boggling amount of data, not all of which is of equal value. The challenge is figuring out what's important for which parts of the design flow. That determines what to extract and loop back to engineers, and when that needs to be done in order to improve the reliability of increasingly com... » read more

The Automation Of AI


Semiconductor Engineering sat down to discuss the role that EDA has in automating artificial intelligence and machine learning with Doug Letcher, president and CEO of Metrics; Daniel Hansson, CEO of Verifyter; Harry Foster, chief scientist verification for Mentor, a Siemens Business; Larry Melling, product management director for Cadence; Manish Pandey, Synopsys fellow; and Raik Brinkmann, CEO ... » read more

Data-Driven Verification Begins


Semiconductor Engineering sat down to discuss data-driven verification with Yoshi Watanabe, senior software architect at Cadence; Hanan Moller, systems architect at UltraSoC; Mark Conklin, principal verification engineer at Arm; and Hao Chen, senior design engineer at Intel. What follows are excerpts of that conversation, which was conducted in front of a live audience at DVCon. (L-R) Yosh... » read more

The Other Side Of Makimoto’s Wave


Custom hardware is undergoing a huge resurgence across a variety of new applications, pushing the semiconductor industry to the other side of Makimoto's Wave. Tsugio Makimoto, the technologist who identified the chip industry’s 10-year cyclical swings between standardization and customization, predicted there always will be room in ASICs for general-purpose processors. But it's becoming mo... » read more

New Design Approaches At 7/5nm


The race to build chips with a multitude of different processing elements and memories is making it more difficult to design, verify and test these devices, particularly when AI and leading-edge manufacturing processes are involved. There are two fundamental problems. First, there are much tighter tolerances for all of the components in those designs due to proximity effects. Second, as a re... » read more

← Older posts