Vertical MoS2 transistors with sub-1-nm gate lengths


Abstract "Ultra-scaled transistors are of interest in the development of next-generation electronic devices. Although atomically thin molybdenum disulfide (MoS2) transistors have been reported, the fabrication of devices with gate lengths below 1 nm has been challenging. Here we demonstrate side-wall MoS2 transistors with an atomically thin channel and a physical gate length of sub-1 nm ... » read more

Power/Performance Bits: Feb. 7


Stopping interference in integrated photonics Researchers at EPFL and Purdue University combined integrated photonics and MEMS to develop an electrically driven optical isolator-on-a-chip that transmits light in only one direction. Optical isolators are useful to prevent reflected light from other components compromising or interfering with an on-chip laser’s performance. They are often c... » read more

Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime


ABSTRACT "We report on the analysis and design of atomically thin graphene resonant nanoelectromechanical systems (NEMS) that can be engineered to exhibit anharmonicity in the quantum regime. Analysis of graphene two-dimensional (2D) NEMS resonators suggests that with device lateral size scaled down to ∼10–30 nm, restoring force due to the third-order (Duffing) stiffness in graphene NE... » read more

The development of integrated circuits based on two-dimensional materials


Abstract Two-dimensional (2D) materials could potentially be used to develop advanced monolithic integrated circuits. However, despite impressive demonstrations of single devices and simple circuits—in some cases with performance superior to those of silicon-based circuits—reports on the fabrication of integrated circuits using 2D materials are limited and the creation of large-scale circu... » read more

Graphene-based PUFs that are reconfigurable and resilient to ML attacks


Researchers at Pennsylvania State University propose using graphene to create physically unclonable functions (PUFs) that are energy efficient, scalable, and secure against AI attacks. Abstract "Graphene has a range of properties that makes it suitable for building devices for the Internet of Things. However, the deployment of such devices will also likely require the development of s... » read more

Power/Performance Bits: July 13


Graphene PUFs Researchers at Pennsylvania State University propose using graphene to create physically unclonable functions (PUFs) that are energy efficient, scalable, and secure against AI attacks. The team first fabricated nearly 2,000 identical graphene transistors. Despite their structural similarity, the transistors' electrical conductivity varied due to the inherent randomness arising... » read more

Power/Performance Bits: April 5


Wafer-scale graphene In an attempt to make graphene more useful for photonic devices, researchers from CNIT, Istituto Italiano di Tecnologia (IIT), Tecip Institute, University of Cambridge, and Graphene Flagship Associated Member and spin-off CamGraphIC developed a wafer-scale graphene fabrication technology that uses predetermined graphene single-crystal templates, allowing for integration in... » read more

Chasing After Carbon Nanotube FETs


Carbon nanotube transistors are finally making progress for potential use in advanced logic chips after nearly a quarter century in R&D. The question now is whether they will move out of the lab and into the fab. Several government agencies, companies, foundries, and universities over the years have been developing, and are now making advancements with carbon nanotube field-effect transi... » read more

Power/Performance Bits: Feb. 8


Transparent sensor Researchers at Osaka University created a thin, flexible, transparent sensor using silver nanowire networks. High-resolution printing was used to fabricate the centimeter-scale cross-aligned silver nanowire arrays, with reproducible feature sizes from 20 to 250 micrometers. As a proof-of-concept for functionality, they used their arrays to detect electrophysiological signals... » read more

Power/Performance Bits: Dec. 7


Logic-in-memory with MoS2 Engineers at École Polytechnique Fédérale de Lausanne (EPFL) built a logic-in-memory device using molybdenum disulfide (MoS2) as the channel material. MoS2 is a three-atom-thick 2D material and excellent semiconductor. The new chip is based on floating-gate field-effect transistors (FGFETs) that can hold electric charges for long periods. MoS2 is particularly se... » read more

← Older posts Newer posts →