中文 English

Author's Latest Posts


Big Payback For Combining Different Types Of Fab Data


Collecting and combining diverse data types from different manufacturing processes can play a significant role in improving semiconductor yield, quality, and reliability, but making that happen requires integrating deep domain expertise from various different process steps and sifting through huge volumes of data scattered across a global supply chain. The semiconductor manufacturing IC data... » read more

Enablers And Barriers For Connecting Diverse Data


More data is being collected at every step of the manufacturing process, raising the possibility of combining data in new ways to solve engineering problems. But this is far from simple, and combining results is not always possible. The semiconductor industry’s thirst for data has created oceans of it from the manufacturing process. In addition, semiconductor designs large and small now ha... » read more

Coping With Parallel Test Site-to-Site Variation


Testing multiple devices in parallel using the same ATE results in reduced test time and lower costs, but it requires engineering finesse to make it so. Minimizing test measurement variation for each device under test (DUT) is a multi-physics problem, and it's one that is becoming more essential to resolve at each new process node and in multi-chip packages. It requires synchronization of el... » read more

One Test Is Not Always Enough


To improve yield, quality, and cost, two separate test parameters can be combined to determine if a part passes or fails. The results gleaned from that approach are more accurate, allowing test and quality engineers to fail parts sooner, detect more test escapes, and ultimately to improve yield and reduce manufacturing costs. New data analytic platforms, combined with better utilization of s... » read more

Fabs Drive Deeper Into Machine Learning


Advanced machine learning is beginning to make inroads into yield enhancement methodology as fabs and equipment makers seek to identify defectivity patterns in wafer images with greater accuracy and speed. Each month a wafer fabrication factory produces tens of millions of wafer-level images from inspection, metrology, and test. Engineers must analyze that data to improve yield and to reject... » read more

Why Wafer Bumps Are Suddenly So Important


Wafer bumps need to be uniform in height to facilitate subsequent manufacturing steps, but a push for 100% inspection in packaging in mission-critical markets is putting a strain on existing measurement technologies. Bump co-planarity is essentially a measure of flatness. Specifically, it measures the variation in bump height, which may have a target, for example, of about 100 microns. As a ... » read more

Geo-Spatial Outlier Detection


Comparing die test results with other die on a wafer helps identify outliers, but combining that data with the exact location of an outlier offers a much deeper understanding of what can go wrong and why. The main idea in outlier detection is to find something in or on a die that is different from all the other dies on a wafer. Doing this in the context of a die’s neighbor has become easie... » read more

Cleaning Up During IC Test


Test is a dirty business. It can contaminate a unit or wafer, or the test hardware, which in turn can cause problems in the field. While this has not gone unnoticed, particularly as costs rise due to increasing pin and ball density, and as more chips are bundled together in a package, the cost of dirt continues to be a focus. Cleaning recipes for test interface boards are changing, and analy... » read more

Digging Much Deeper With Unit Retest


Keeping test costs flat in the face of product complexity continues to challenge both product and test engineers. Increased data collection at package-level test and the ability to respond to it in a never-before level of detail has prompted device makers and assembly and test houses to tighten up their retest processes. Test metrology, socket contamination, and mechanical alignment have alw... » read more

Managing Wafer Retest


Every wafer test touch-down requires a balance between a good electrical contact and preventing damage to the wafer and probe card. Done wrong, it can ruin a wafer and the customized probe card and result in poor yield, as well as failures in the field. Achieving this balance requires good wafer probing process procedures as well as monitoring of the resulting process parameters, much of it ... » read more

← Older posts