Optimizing Interconnect Topologies For Automotive ADAS Applications


Designing automotive Advanced Driver Assistance Systems (ADAS) applications can be incredibly complex. State-of-the-art ADAS and autonomous driving systems use ‘sensor fusion’ to combine inputs from multiple sources, typically cameras and optionally radar and lidar units to go beyond passive and active safety to automate driving. Vision processing systems combine specialized AI accelerators... » read more

Toward Software-Defined Vehicles


Speed is everything when it comes to designing automotive electronics, but not in the usual way. In the past, product cycles often lasted five to seven years, from initial design to implementation inside of vehicles. That no longer works as vehicles adopt more electronic features to replace mechanical ones, and as competition heats up over the latest features and nearly instantaneous over-the-a... » read more

Automotive Semiconductors Require Integrated Test Solution


The automotive semiconductor test market is experiencing organic growth as chipmakers produce higher volumes of devices serving an array of automotive applications. In addition, the range of applications for automotive-grade semiconductors is evolving as the technology advances. Manufacturers of automated test equipment (ATE) are adapting to ensure their systems can handle devices ranging from ... » read more

Digital Twin And The Implications For Semiconductor Suppliers


Automotive is a prime example of one industry where advanced semiconductors are forcing change across all aspects of vehicle development. Accelerated investment is fueling this industry wide evolution, driven by new business models, environmental regulations, and the evolution toward fully autonomous, software-defined vehicles. The demand for fully and semi-autonomous systems has a particula... » read more

Navigating Chiplet-Based Automotive Electronics Design With Advanced Tools And Flows


In the rapidly evolving landscape of automotive electronics, traditional monolithic design approaches are giving way to something more flexible and powerful—chiplets. These modular microchips, which are themselves parts of a whole silicon system, offer unparalleled potential for improving system performance, reducing manufacturing costs, and accelerating time-to-market in the automotive secto... » read more

Thermal Challenges Multiply In Automotive, Embedded Devices


Embedding chips into stacked-die assemblies is creating thermal dissipation challenges that can reduce the reliability and lifespan of these devices, a growing problem as chipmakers begin cramming chiplets into advanced packages with thinner substrates between them. In the past, nearly all of these complex designs were used in tightly controlled environments, such as a large data center, whe... » read more

Big Shift: Creating Automotive SW Without HW


Experts at the Table: The automotive ecosystem is undergoing a transformation toward software-defined vehicles, spurring new architectures with more software. Semiconductor Engineering sat down to discuss the impact of these changes with Suraj Gajendra, vice president of products and solutions in Arm's automotive line of business; Chuck Alpert, R&D automotive fellow at Cadence; Steve Spadon... » read more

Automotive Electronics Reliability Requires In-Field Silicon Monitoring


By Lorin Kennedy and Dan Alexandrescu For everyday consumers, no products require reliability more than automobiles. While consumers may be willing accept their laptops and phones limiting performance or abruptly turning off when systems reach unacceptable temperature levels, that is not the case for the reliability of Advanced Driver-Assistance Systems (ADAS) or other safety critical system... » read more

Semiconductor Testing Unlocks Increasing Levels Of ADAS


Today’s advanced driver assistance systems (ADAS) require unprecedented computing power – tasked with processing an incredible amount of data from sensors in real-time, making split-second decisions, and ensuring the safety and comfort of passengers. The challenge is fluid and, as vehicles ascend from one level of autonomous driving to the next, computational demands will rise exponentially... » read more

The Uncertainty Of Certifying AI For Automotive


Nearly every new vehicle sold uses AI to make some decisions, but so far there is no consistency in what is being developed, where it is being used, and whether it is compatible with other vehicles on the road. This fragmentation is partially due to the fact that AI is still a nascent technology, and cars and trucks sold today may be significantly different than those that will be sold sever... » read more

← Older posts