Manufacturing Bits: July 14


Complementary FETs At the recent 2020 Symposia on VLSI Technology and Circuits, Imec presented a paper on a 3D complementary field-effect transistor (CFET) made on 300mm wafers. As a demonstration vehicle, Imec showed a CFET based on a 14nm process. Ideally, though, CFETs are next-generation transistors that are targeted for the 1nm node in the future. On the transistor front, chipmaker... » read more

Power/Performance Bits: June 23


Capturing waste heat Researchers at Wuhan University and University of California Los Angeles developed a hydrogel that can both cool down electronics and convert the waste heat into electricity. The thermogalvanic hydrogel consists of a polyacrylamide framework infused with water and specific ions. When they heated the hydrogel, two of the ions (ferricyanide and ferrocyanide) transferred e... » read more

The Next Advanced Packages


Packaging houses are readying their next-generation advanced IC packages, paving the way toward new and innovative system-level chip designs. These packages include new versions of 2.5D/3D technologies, chiplets, fan-out and even wafer-scale packaging. A given package type may include several variations. For example, vendors are developing new fan-out packages using wafers and panels. One is... » read more

Challenges For Compute-In-Memory Accelerators


A compute-in-memory (CIM) accelerator does not simply replace conventional logic. It's a lot more complicated than that. Regardless of the memory technology, the accelerator redefines the latency and energy consumption characteristics of the system as a whole. When the accelerator is built from noisy, low-precision computational elements, the situation becomes even more complex. Tzu-Hsian... » read more

Week In Review: Auto, Security, Pervasive Computing


Edge, cloud, data center Synopsys launched its USB4 IP and tools, already with a successful tapeout of a USB4 PHY test chip on 5nm advanced FinFET process. The Designware USB4 IP’s throughput is up to 20 or 40 Gbps, which Synopsys says is the bandwidth needed for high-performance edge AI, storage, PC, and tablet SoC designs. Also, Samsung Foundry certified Synopsys’ Design Compiler NXT for ... » read more

Power/Performance Bits: May 26


Warmer quantum computing Researchers at the University of New South Wales Sydney, Université de Sherbrooke, Aalto University, and Keio University developed a proof-of-concept quantum processor unit cell on a silicon chip that works at 1.5 Kelvin – 15 times warmer than current chip-based technology that uses superconducting qubits. "This is still very cold, but is a temperature that can b... » read more

Manufacturing Bits: April 21


Memristors reappear The University of Massachusetts Amherst has taken a step towards of the realization of neuromorphic computing--it has devised bio-voltage memristors based on protein nanowires. In neuromorphic computing, the idea is to bring the memory closer to the processing tasks to speed up a system. For this, the industry is attempting to replicate the brain in silicon. The goal is ... » read more

COVID-19 Tech Bits


Tech companies, consortiums and universities are jumping in to help fight COVID-19, deploying everything from massive computing capabilities to developing new technologies that can protect medical workers and first responders. Nearly all of these have ramped up over the past several weeks, as the tech world begins to take on a global challenge to combat the deadly virus. Compute resources... » read more

Scaling Up Compute-In-Memory Accelerators


Researchers are zeroing in on new architectures to boost performance by limiting the movement of data in a device, but this is proving to be much harder than it appears. The argument for memory-based computation is familiar by now. Many important computational workloads involve repetitive operations on large datasets. Moving data from memory to the processing unit and back — the so-called ... » read more

Week In Review: Auto, Security, Pervasive Computing


AI/Edge The United States Department of Defense (DOD) has adopted ethical principles for using artificial intelligence in warfare that chiefly say the U.S. has to follow the laws, treaties, in use of AI in warfare. Any AI used by DOD has to be responsible, equitable, traceable, reliable and governable. “The Department will design and engineer AI capabilities to fulfill their intended functio... » read more

← Older posts