System Bits: May 16


Refrigerator for quantum computers Quantum physicist Mikko Möttönen at Aalto University in Finland and his team have invented a quantum-circuit refrigerator, meant to reduce errors in quantum computing. The research results suggest how harmful errors in quantum computing can be removed — a new twist towards a functioning quantum computer. The team reminded that quantum computers use... » read more

System Bits: May 9


Graphene adopts exotic electronic states In a platform that may be used to explore avenues for quantum computing, MIT researchers have found that a flake of graphene, when brought in close proximity with two superconducting materials, can inherit some of those materials’ superconducting qualities. They reminded that in normal conductive materials such as silver and copper, electric curren... » read more

System Bits: May 2


AI systems echo human prejudices One of the concerns about the of future artificial intelligence systems includes the perception that these machine-based systems are coldly logical and objectively rational, however, this may not be the case. In fact, in a new study by Princeton University researchers has shown how machines can be reflections of their creators in potentially problematic ways. ... » read more

System Bits: April 18


RISC-V errors Princeton University researchers have discovered a series of errors in the RISC-V instruction specification that now are leading to changes in the new system, which seeks to facilitate open-source design for computer chips. In testing a technique they created for analyzing computer memory use, the team found over 100 errors involving incorrect orderings in the storage and retr... » read more

System Bits: April 4


Nanodevices for extreme environments in space, on earth Researchers at the Stanford Extreme Environment Microsystems Laboratory (XLab) are on a mission to conquer conditions such as those found on Venus: a hot surface pelted with sulfuric acid rains, 480 degrees C, an atmosphere that would fry today’s electronics. By developing heat-, corrosion- and radiation-resistant electronics, the team ... » read more

System Bits: March 28


Automating biology experiments with adapted Lego kit To bring more of the features of modern biology labs — that often use robotic assemblies to drop precise amounts of fluids into experimental containers — to students and teachers, Stanford University researchers have shown how an off-the-shelf Lego kit can be modified to create inexpensive automated systems to do this in clubs or classro... » read more

Power/Performance Bits: March 28


Storing solar energy as carbon monoxide A team at Indiana University engineered a molecule that collects and stores solar energy without solar panels. The molecule uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide more efficiently than any other method of carbon reduction. Burning fuel such as carbon monoxide produces carbon dioxide and releases e... » read more

Manufacturing Bits: March 21


Making harder windows Using cubic silicon nitride materials, a team of researchers have developed a harder window that can sustain severe conditions. There is a demand for harder and stronger windows in various applications, such as engines, ball bearings, cutting tools and other others. To enable this technology, researchers used materials based on transparent polycrystalline ceramics. One... » read more

TFETs Cut Sub-Threshold Swing


One of the main obstacles to continued transistor scaling is power consumption. As gate length decreases, the sub-threshold swing (SS) — the gate voltage required to change the drain current by one order of magnitude — increases. As Qin Zhang, Wei Zhao, and Alan Seabaugh of Notre Dame explained in 2006, SS faces a theoretical minimum of 60 mV/decade at room temperature in conventional MO... » read more

Higher-Than-Ballistic Conduction of Viscous Electron Flows (MIT & Weizmann)


Source: Massachusetts Institute of Technology, Weizmann Institute of Science, Rehovot  Israel Haoyu Guo, Ekin Ilseven, Gregory Falkovich, Leonid Levitov "A new finding by physicists at MIT and in Israel shows that under certain specialized conditions, electrons can speed through a narrow opening in a piece of metal more easily than traditional theory says is possible. This “superball... » read more

← Older posts