System Bits: Sept. 18


Better AI technique for chemistry predictions CalTech researchers have found a new technique that uses machine learning more effectively to predict how complex chemicals will react to reagents. The tool is a new twist on similar machine learning techniques to find more effective catalysts without having the time-consuming trial-and-error research, making it a time-saver for drug researchers. ... » read more

System Bits: Sept. 11


Researchers ‘teleport’ a quantum gate In a key architectural step for building modular quantum computers, Yale University researchers have demonstrated the teleportation of a quantum gate between two qubits, on demand. [caption id="attachment_24137942" align="alignleft" width="300"] A network overview of the modular quantum architecture demonstrated in the new study.Source: Yale Universit... » read more

System Bits: Sept. 4


Quantum material is both conductor, insulator University of Michigan researchers reminded that quantum materials are a type of odd substance that could be many times more efficient at conducting electricity through a mobile device like an iPhone than the commonly used conductor silicon if physicists could figure out how they work. Now, a University of Michigan physicist has taken a step clo... » read more

Power/Performance Bits: Aug. 28


Multilayer stretchable electronics Researchers at UC San Diego, the University of Electronic Science and Technology of China, and the Air Force Research Laboratory developed an approach to creating stacked, stretchable electronics with complex functionality. "Rigid electronics can offer a lot of functionality on a small footprint--they can easily be manufactured with as many as 50 layers of... » read more

Week in Review: IoT, Security, Auto


Internet of Things Arm uncorked its first forward-looking CPU roadmap and performance numbers for client computing. The company said it expects to deliver annual performance improvements of more than 15% per year through 2020. The targeted market includes 5G, always-on, always-connected devices. C3 IoT will work with Google Cloud to support artificial intelligence and Internet of Things dep... » read more

System Bits: Aug. 21


Two types of computers create faster, less energy-intensive image processor for autonomous cars, security cameras, medical devices Stanford University researchers reminded that the image recognition technology that underlies today’s autonomous cars and aerial drones depends on artificial intelligence. These are the computers that essentially teach themselves to recognize objects like a dog, ... » read more

A Review of Silicon Photonics


With the end of Moore’s Law rapidly approaching—some say it's already here—new applications of older technologies are gaining attention. One specific area of interest is photonics. The National Center for Optics and Photonic Education defines photonics as the technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. It can also be... » read more

Memory Startups To Watch


The next-generation memories are finally ramping up after years’ of delays and promises. Intel, for one, is shipping 3D XPoint, a next-generation technology based on phase-change memory. In addition, the big foundries are readying embedded MRAM. And, of course, there are a number of other players in the next-generation memory arena. There are also a number of startups that are flying un... » read more

System Bits: Aug. 14


Machine-learning system determines the fewest, smallest doses that could still shrink brain tumors In an effort to improve the quality of life for patients by reducing toxic chemotherapy and radiotherapy dosing for glioblastoma, the most aggressive form of brain cancer, MIT researchers are employing novel machine-learning techniques. According to the team, glioblastoma is a malignant tumor ... » read more

Power/Performance Bits: Aug. 14


All-optical logic Researchers from Aalto University developed multifunction all-optical logic gates using a network of nanowires. To build the nanostructure, the team assembled two different semiconductor nanowires, indium phosphide and aluminum gallium arsenide. The nanowires have a unique one-dimensional structure, which allows them to function like nanosized antennas for light. Using ... » read more

← Older posts