Controlling Variability And Cost At 3nm And Beyond


Richard Gottscho, executive vice president and CTO of Lam Research, sat down with Semiconductor Engineering to talk about how to utilize more data from sensors in manufacturing equipment, the migration to new process nodes, and advancements in ALE and materials that could have a big impact on controlling costs. What follows are excerpts of that conversation. SE: As more sensors are added int... » read more

Engineering The Signal For GDDR6


DDR1 through DDR3 had their challenges, but speeds were below one gigabit and signal integrity (SI) challenges were more centered around static timing and running pseudo random binary sequence (PRBS) simulations. Now, with GDDR6, we are working on 16 to 20 gigabits per second (Gbps) signaling and even faster in the near future. As a result, engineering the signal for GDDR6 will require careful ... » read more

Latency Under Load: HBM2 vs. GDDR6


Steven Woo, Rambus fellow and distinguished inventor, explains why data traffic and bandwidth are critical to choosing the type of DRAM, options for improving traffic flow in different memory types, and how this works with multiple memory types.   Related Video GDDR6 - HBM2 Tradeoffs Why designers choose one memory type over another. Applications for each were clearly delineate... » read more

Power/Performance Bits: May 6


Compressing objects Computer scientists at MIT propose a way to improve data compression in memory by focusing on objects rather than cache lines. "The motivation was trying to come up with a new memory hierarchy that could do object-based compression, instead of cache-line compression, because that's how most modern programming languages manage data," said Po-An Tsai, a graduate student at... » read more

Comparing New Memory Types


After decades of research and development, three new types of memory—magnetic RAM (MRAM), phase change memory (PCRAM) and resistive RAM (ReRAM)—are moving toward commercial adoption, making this an exciting time for the semiconductor and computing industries. All three of these emerging memories are enabled by new materials and will require breakthroughs in process technology and manufactur... » read more

Finding The Bottom Of The Memory Trough


In announcing its Q2 fiscal 2019 results, Micron Technology, Inc. provided lower-than-expected revenue guidance of between $46 billion and $50 billion for the current quarter. However, what was particularly noteworthy was the company’s announcement to cut output by 5 percent due to weaker-than-expected market demand and its prediction that its customers’ inventory correction will last until... » read more

More Memory And Processor Tradeoffs


Creating a new chip architecture is becoming an increasingly complex series of tradeoffs about memories and processing elements, but the benefits are not always obvious when those tradeoffs are being made. This used to be a fairly straightforward exercise when there was one processor, on-chip SRAM and off-chip DRAM. Fast forward to 7/5nm, where chips are being developed for AI, mobile ph... » read more

GDDR6 And HBM2: Signal Integrity Challenges For AI


In a nutshell, Artificial Intelligence (AI) and its growing list of applications demand a considerably large amount of bandwidth to push bits in and out of memory at the highest speeds possible. AI has been getting a lot of industry attention, and certainly it’s not a new phenomenon because it’s been gaining even greater traction in the last year or two. This is especially true since a n... » read more

Target: 50% Reduction In Memory Power


Memory consumes about 50% or more of the area and about 50% of the power of an SoC, and those percentages are likely to increase. The problem is that static random access memory (SRAM) has not scaled in accordance with Moore's Law, and that will not change. In addition, with many devices not chasing the latest node and with power becoming an increasing concern, the industry must find ways to... » read more

Optimization Challenges For Safety And Security


Complexity challenges long-held assumptions. In the past, the semiconductor industry thought it understood performance/area tradeoffs, but over time it became clear this is not so simple. Measuring performance is no longer an absolute. Power has many dimensions including peak, average, total energy and heat, and power and function are tied together. Design teams are now dealing with the impl... » read more

← Older posts