5nm Design Progress


Activity surrounding the 5nm manufacturing process node is quickly ramping, creating a better picture of the myriad and increasingly complex design issues that must be overcome. Progress at each new node after 28nm has required an increasingly tight partnership between the foundries, which are developing new processes and rule decks, along with EDA and IP vendors, which are adding tools, met... » read more

Security Holes In Machine Learning And AI


Machine learning and AI developers are starting to examine the integrity of training data, which in some cases will be used to train millions or even billions of devices. But this is the beginning of what will become a mammoth effort, because today no one is quite sure how that training data can be corrupted, or what to do about it if it is corrupted. Machine learning, deep learning and arti... » read more

Machine Learning’s Limits


Semiconductor Engineering sat down with Rob Aitken, an Arm fellow; Raik Brinkmann, CEO of OneSpin Solutions; Patrick Soheili, vice president of business and corporate development at eSilicon; and Chris Rowen, CEO of Babblelabs. What follows are excerpts of that conversation. To view part one, click here. SE: How much of what goes wrong in machine learning depends on the algorithm being wrong... » read more

Week In Review: Design, Low Power


M&A Siemens acquired Austemper Design Systems, which provides tools for functional safety and safety-critical designs. Founded in 2015, Texas-based Austemper adds state-of-the-art safety analysis, auto-correction and fault simulation technology to address random hardware faults, as well as correct and harden vulnerable areas, subsequently performing fault simulation to ensure the design is... » read more

FinFET ASICs: It Takes A Platform


Sophisticated, specialized ASIC technology is making an impact on the everyday world around us. Whether it’s a gadget you can have a conversation with, a car that will take over driving from time to time, or internet speeds that seem impossibly fast, there is likely sophisticated custom silicon present as a critical enabling technology. Plenty has been written about advanced ASICs for network... » read more

Near-Threshold Issues Deepen


Complex issues stemming from near-threshold computing, where the operating voltage and threshold voltage are very close together, are becoming more common at each new node. In fact, there are reports that the top five mobile chip companies, all with chips at 10/7nm, have had performance failures traced back to process variation and timing issues. Once a rather esoteric design technique, near... » read more

The Week In Review: Design


Tools & IP Synopsys added machine learning capabilities to its Design Platform. The company highlighted benefits to the PrimeTime signoff tool, which saw 5X faster power recovery in customer designs at leading-edge geometries. Renesas is using the tool, noting a 4X power ECO speed-up. ArterisIP unveiled a standalone last level cache (LLC) for high-performance SoCs. CodaCache can be adde... » read more

Machine Learning’s Limits


Semiconductor Engineering sat down with Rob Aitken, an Arm fellow; Raik Brinkmann, CEO of OneSpin Solutions; Patrick Soheili, vice president of business and corporate development at eSilicon; and Chris Rowen, CEO of Babblelabs. What follows are excerpts of that conversation. SE: Where are we with machine learning? What problems still have to be resolved? Aitken: We're in a state where thi... » read more

Deep Learning And The Future


Following up from my last post on our deep learning event at the Computer History Museum – “ASICs Unlock Deep Learning Innovation,” I’d like to take a glimpse into the future. Like many such discussions, it’s often useful to take a look back first to try and make sense out of what is to come.  That’s essentlially what our keynote speaker, Ty Garibay, did at the event. Ty is the CTO... » read more

More Nodes, New Problems


The rollout of leading-edge process nodes is accelerating rather than slowing down, defying predictions that device scaling would begin to subside due to rising costs and the increased difficulty of developing chips at those nodes. Costs are indeed rising. So are the number of design rules, which reflect skyrocketing complexity stemming from multiple patterning, more devices on a chip, and m... » read more

← Older posts