Author's Latest Posts


Blog Review: Dec. 4


Siemens' Reetika explains how creating and verifying a complete reset tree structure allows designers to trace the flow of reset signals across the design and ensure that every sequential element is tagged correctly within its respective reset domain. Cadence's Durlov Khan suggests DDR5 DIMM Memory Models and Discrete Component Models as part of a flexible approach to validating specific com... » read more

Research Bits: Dec. 3


Self-assembly of mixed-metal oxide arrays Researchers from North Carolina State University and Iowa State University demonstrated a technique for self-assembling electronic devices. The proof-of-concept work was used to create diodes and transistors with high yield and could be used for more complex electronic devices. “Our self-assembling approach is significantly faster and less expensi... » read more

Research Bits: Nov. 25


3D-printed ESD protection Researchers from Lawrence Livermore National Laboratory developed a printable elastomeric silicone foam for electronics packaging that provides both mechanical and electrostatic discharge (ESD) protection. The team used a 3D printing technique called direct ink writing (DIW), an extrusion process in which a paste with controlled rheological properties such as elast... » read more

Blog Review: Nov. 20


Siemens’ Jonathan Muirhead explains why matching and symmetry are so important for analog and RF circuits, especially in topological structures like differential pairs and current mirrors, and introduces checking techniques to ensure compliance. Cadence's Satish Kumar Padhi examines the significance of randomization in PCIe IDE verification, focusing on how it ensures data integrity and en... » read more

Research Bits: Nov. 19


Starchy nanocomposite films Researchers from Queen Mary University of London created biodegradable, flexible, and electrically conductive nanocomposite films made using potato starch instead of petroleum-based materials. The starch-based films decompose within a month when buried in soil. In addition to starch, the nanocomposite films contain the conductive 2D material MXene. Adjusting the ... » read more

Research Bits: Nov. 11


Quantum tunneling transistor Researchers from MIT and University of Udine fabricated a transistor that uses ultrathin layers of gallium antimonide and indium arsenide arranged in vertical nanowire heterostructures with a diameter of 6nm. The quantum tunneling effects of the material enable it to simultaneously achieve low-voltage operation and high performance. “This is a technology with ... » read more

Blog Review: Nov. 6


Cadence's Satish Kumar C explores how the Deferrable Memory Write transaction type in PCIe and CXL can improve latency, efficiency, and performance by delaying certain memory write operations during system bus congestion or until other priority tasks are complete and highlights implementation and verification challenges. Synopsys' Daryl Seitzer and Rahul Thukral point to magnetoresistive RAM... » read more

Research Bits: Nov. 5


Optical in-memory computing Researchers from the University of Pittsburgh, University of California Santa Barbara, University of Cagliari, and Institute of Science Tokyo propose a resonance-based photonic architecture which leverages the non-reciprocal phase shift in magneto-optical materials to implement photonic in-memory computing. “The materials we use in developing these cells have b... » read more

Blog Review: Oct. 30


Synopsys' Frank Schirrmeister argues that hardware-assisted verification techniques like emulation and prototyping are essential to help engineers improve design behavior to manage complexity and ensure systems function seamlessly in real-world applications. Siemens’ Stephen V. Chavez finds that ultra high-density interconnect (UHDI) has changed the design and production of PCBs to enable ... » read more

Research Bits: Oct. 29


Micro-LED DUV maskless lithography Researchers from the University of Science and Technology of China, Anhui GaN Semiconductor, and Wuhan University developed a vertically integrated micro-LED array for deep ultraviolet (DUV) maskless photolithography. The team fabricated a DUV display integrated chip with 564 pixels-per-inch density that uses a three-dimensional vertically integrated devic... » read more

← Older posts