Wrestling With High-Speed SerDes


SerDes has emerged as the primary solution in chips where there is a need for fast data movement and limited I/O, but this technology is becoming significantly more challenging to work with as speeds continue to rise to offset the massive increase in data. A Serializer/Deserializer is used to convert parallel data into serial data, allowing designers to speed up data communication without h... » read more

CEO Outlook: It Gets Much Harder From Here


Semiconductor Engineering sat down to discuss what's changing across the semiconductor industry with Wally Rhines, CEO emeritus at Mentor, a Siemens Business; Jack Harding, president and CEO of eSilicon; John Kibarian, president and CEO of PDF Solutions; and John Chong, vice president of product and business development for Kionix. What follows are excerpts of that discussion, which was held in... » read more

Verification At 7/5nm


Christen Decoin, senior director of business development at Synopsys, talks about what’s missing in verification, how is that affected by complex chips such as 7nm SoCs or AI chips, and why more steps need to be done concurrently. https://youtu.be/bz6KyJh67sI » read more

Selective Removal For Stronger Fins


By Matt Cogorno and Toshihiko Miyashita Remember when we could charge our mobile phones on a Sunday and not even think about it again until the next weekend? There was a time when battery life wasn’t even in the top ten concerns when purchasing a mobile phone. Today however, smartphones are constantly being used for computing, gaming, video streaming and other power-hungry applications, so... » read more

Realizing the Benefits of 14/16nm Technologies


The scaling benefits of Moore’s Law are challenging below 28nm. It is no longer a given that the cost per gate will go down at process nodes below 28nm, e.g., 20nm though 14nm and 7nm. Rising design and manufacturing costs are contributing factors to this trend. Meanwhile, the competing trend of fewer but more complex system-on-chip (SoC) designs is reducing the knowledge base of many chip... » read more

Variation Issues Grow Wider And Deeper


Variation is becoming more problematic as chips become increasingly heterogeneous and as they are used in new applications and different locations, sparking concerns about how to solve these issues and what the full impact will be. In the past, variation in semiconductors was considered a foundry issue, typically at the most advanced process node, and largely ignored by most companies. New p... » read more

Planning For 5G And The Edge


Semiconductor Engineering sat down to discuss 5G and edge computing with Rahul Goyal, vice president in the technology and manufacturing group at Intel; John Lee, vice president and general manager of the semiconductor business unit at ANSYS; Rob Aitken, R&D fellow at Arm; and Lluis Paris, director of IP portfolio marketing at TSMC. What follows are excerpts of that conversation. Part one i... » read more

Power Issues Rising For New Applications


Managing power in chips is becoming more difficult across a wide range of applications and process nodes, forcing chipmakers and systems companies to rethink their power strategies and address problems much earlier than in the past. While power has long been a major focus in the mobile space, power-related issues now are spreading well beyond phones and laptop computers. There are several re... » read more

What’s the Right Path For Scaling?


The growing challenges of traditional chip scaling at advanced nodes are prompting the industry to take a harder look at different options for future devices. Scaling is still on the list, with the industry laying plans for 5nm and beyond. But less conventional approaches are becoming more viable and gaining traction, as well, including advanced packaging and in-memory computing. Some option... » read more

Foundries Prepare For Battle At 22nm


After introducing new 22nm processes over the last year or two, foundries are gearing up the technology for production—and preparing for a showdown. GlobalFoundries, Intel, TSMC and UMC are developing and/or expanding their efforts at 22nm amid signs this node could generate substantial business for applications like automotive, IoT and wireless. But foundry customers face some tough choic... » read more

← Older posts