Power Management Becomes Top Issue Everywhere


Power management is becoming a bigger challenge across a wide variety of applications, from consumer products such as televisions and set-top-boxes to large data centers, where the cost of cooling server racks to offset the impact of thermal dissipation can be enormous. Several years ago, low-power design was largely relegated to mobile devices that were dependent on a battery. Since then, i... » read more

Power Challenges In ML Processors


The design of artificial intelligence (AI) chips or machine learning (ML) systems requires that designers and architects use every trick in the book and then learn some new ones if they are to be successful. Call it style, call it architecture, there are some designs that are just better than others. When it comes to power, there are plenty of ways that small changes can make large differences.... » read more

Chiplet Momentum Rising


The chiplet model is gaining momentum as an alternative to developing monolithic ASIC designs, which are becoming more complex and expensive at each node. Several companies and industry groups are rallying around the chiplet model, including AMD, Intel and TSMC. In addition, there is a new U.S. Department of Defense (DoD) initiative. The goal is to speed up time to market and reduce the cost... » read more

Moving To GAA FETs


How do you measure the size of a transistor? Is it the gate length, or the distance between the source and drain contacts? For planar transistors, the two values are approximately the same. The gate, plus a dielectric spacer, fits between the source and drain contacts. The contact pitch, limited by the smallest features that the lithography process can print, determines how many transistors ... » read more

Moore And More


For more than 50 years, the semiconductor industry has enjoyed the benefits of Moore's Law — or so it seemed. In reality, there were three laws rolled up into one: Each process generation would have a higher clock speed at the same power. This was not discovered by Moore, but by Dennard, who also invented the DRAM. Process generations continue to get faster and lower power, but the power... » read more

Analog Simulation At 7/5/3nm


Hany Elhak, group director of product management at Cadence, talks with Semiconductor Engineering about analog circuit simulation at advanced nodes, why process variation is an increasing problem, the impact of parasitics and finFET stacking, and what happens when gate-all-around FETs are added into the chip. » read more

Analog: Avoid Or Embrace?


We live in an analog world, but digital processing has proven quicker, cheaper and easier. Moving digital data around is only possible while the physics of wires can be safely abstracted away enough to provide reliable communications. As soon as a signal passes off-chip, the analog domain reasserts control for modern systems. Each of those transitions requires a data converter. The usage ... » read more

Crossed Wires On Domains


Clock, power and reset domains can form a tangled web if systems are not architected correctly. Wires that cross these domains often require special treatment and additional analysis. They are all evolving independently, meaning that designers must keep up with the latest methodology guidelines and tool capabilities to ensure problems do not remain hidden until they get exposed in silicon. C... » read more

Designing In 4D


The chip design world is no longer flat or static, and increasingly it's no longer standardized. Until 16/14nm, most design engineers viewed the world in two dimensions. Circuits were laid out along x and y axes, and everything was packed in between those two borders. The biggest problems were that nothing printed as neatly as the blueprint suggested, and current leaked out of two-dimension... » read more

How FinFET Device Performance Is Affected By Epitaxial Process Variations


By Shih-Hao (Jacky) Huang and Yu De Chen As the need to scale transistors to ever-smaller sizes continues to press on technology designers, the impact of parasitic resistance and capacitance can approach or even outpace other aspects of transistor performance, such as fringing capacitance or source drain resistance. The total resistance in a device is comprised of two components: internal re... » read more

← Older posts