中文 English

The Future Of FinFETs At 5nm And Beyond


While contact gate pitch (GP) and fin pitch (FP) scaling continues to provide higher performance and lower power to finFET platforms, controlling RC parasitics and achieving higher transistor performance at technology nodes of 5nm and beyond becomes challenging. In collaboration with Imec, we recently used SEMulator3D virtual fabrication to explore an end-to-end solution to better underst... » read more

Breaking The 2nm Barrier


Chipmakers continue to make advancements with transistor technologies at the latest process nodes, but the interconnects within these structures are struggling to keep pace. The chip industry is working on several technologies to solve the interconnect bottleneck, but many of those solutions are still in R&D and may not appear for some time — possibly not until 2nm, which is expected t... » read more

Evaluation Of The Impact Of Source Drain epi Implementation On Logic Performance Using Combined Process And Circuit Simulation


In this paper, we explore an end-to-end solution using SEMulator3D to address the need to include process variation effects in circuit simulation. For the first time, we couple SEMulator3D with BSIM compact modeling to evaluate process variation impacts on circuit performance. The process integration goal of the study was to optimize contacts and spacer thickness of advanced-node FinFETs in ter... » read more

Design For Reliability


Circuit aging is emerging as a mandatory design concern across a swath of end markets, particularly in markets where advanced-node chips are expected to last for more than a few years. Some chipmakers view this as a competitive opportunity, but others are unsure we fully understand how those devices will age. Aging is the latest in a long list of issues being pushed further left in the desig... » read more

New Transistor Structures At 3nm/2nm


Several foundries continue to develop new processes based on next-generation gate-all-around transistors, including more advanced high-mobility versions, but bringing these technologies into production is going to be difficult and expensive. Intel, Samsung, TSMC and others are laying the groundwork for the transition from today’s finFET transistors to new gate-all-around field-effect trans... » read more

Structural Integrity Of Chips


A new challenge is on the horizon, and it's one that could have some interesting consequences for chip design — structural integrity. Ever since the introduction of finFETs and 3D NAND, the lines have been blurring between electrical and mechanical engineering. After some initial reports of fins collapsing or breaking, and variable distances between layers, chipmakers figured out how to so... » read more

From FinFETs To Gate-All-Around


When they were first commercialized at the 22 nm node, finFETs represented a revolutionary change to the way we build transistors, the tiny switches in the “brains” of a chip. As compared to prior planar transistors, the fin, contacted on three sides by the gate, provides much better control of the channel formed within the fin. But, finFETs are already reaching the end of their utility as... » read more

Dealing With Sub-Threshold Variation


Chipmakers are pushing into sub-threshold operation in an effort to prolong battery life and reduce energy costs, adding a whole new set of challenges for design teams. While process and environmental variation long have been concerns for advanced silicon process nodes, most designs operate in the standard “super-threshold” regime. Sub-threshold designs, in contrast, have unique variatio... » read more

Productivity Keeping Pace With Complexity


Designs have become larger and more complex and yet design time has shortened, but team sizes remain essentially flat. Does this show that productivity is keeping pace with complexity for everyone? The answer appears to be yes, at least for now, for a multitude of reasons. More design and IP reuse is using more and larger IP blocks and subsystems. In addition, the tools are improving, and mo... » read more

Finding Defects With E-Beam Inspection


Several companies are developing or shipping next-generation e-beam inspection systems in an effort to reduce defects in advanced logic and memory chips. Vendors are taking two approaches with these new e-beam inspection systems. One is a more traditional approach, which uses a single-beam e-beam system. Others, meanwhile, are developing newer multi-beam technology. Both approaches have thei... » read more

← Older posts