Author's Latest Posts


Planes, Birdhouses And Image Recognition


My recent blog post on the limits of neuromorphic computing took an optimistic view: even neuromorphic systems that are relatively crude by the standards of biological brains can still find commercially important applications. A few days after I finished it, I was reminded that the pessimists are not wrong when a friend of mine shared this image. Fig. 1: Trover Gourds in purple martin nest... » read more

Pessimism, Optimism And Neuromorphic Computing


As I’ve been researching this series on neuromorphic computing, I’ve learned that there are two views of the field. One, which I’ll call the “optimist” view, often held by computer scientists and electrical engineers, focuses on the possibilities: self-driving cars. Homes that can learn their owners’ needs. Automated medical assistants. The other, the “pessimist” view, often hel... » read more

Neuromorphic Computing: Modeling The Brain


Can you tell the difference between a pedestrian and a bicycle? How about between a skunk and a black and white cat? Or between your neighbor’s dog and a colt or fawn? Of course you can, and you probably can do that without much conscious thought. Humans are very good at interpreting the world around them, both visually and through other sensory input. Computers are not. Though their sheer... » read more

Materials For Future Electronics


Examining the research underway in electronics materials provides a keyhole view into what may be possible in future electronics design. Although some of this research will not end up in commercial products, it does provide an indication of the kinds of problems that are being addressed, how they are being approached, and where the research dollars are being spent. Flexible electronics are a... » read more

The Other Side Of H1-B Visas


There is a lot of discussion these days about “Hire American.” But what does that actually mean in practice? I’m at the Materials Research Society Spring Meeting this week, where one of the presentations was by a scientist who works at the TEL Technology Center, America, in Albany, NY. It’s the largest Tokyo Electron research center outside of Japan. It’s affiliated with the SUNY P... » read more

Will Self-Heating Stop FinFETs


New transistor designs and new materials don’t appear out of thin air. Their adoption always is driven by the limitations of the incumbent technology. Silicon germanium and other compound semiconductors are interesting because they promise superior carrier mobility relative to silicon. [getkc id="185" kc_name="FinFET"] transistor designs help minimize short channel effects, a critical limi... » read more

TFETs And/Or MOSFETs For Low-Power Design


As discussed in Reducing Subthreshold Swing With TFETs, papers at December’s IEEE Electron Device Meeting examined a variety of potential designs for tunneling transistors (TFETs). That focus continued at the recent CS International Conference. In particular, Nadine Collaert discussed IMEC’s work on InGaAs homo-junction devices. Many compound semiconductor devices depend on heterojunctio... » read more

TFETs Cut Sub-Threshold Swing


One of the main obstacles to continued transistor scaling is power consumption. As gate length decreases, the sub-threshold swing (SS) — the gate voltage required to change the drain current by one order of magnitude — increases. As Qin Zhang, Wei Zhao, and Alan Seabaugh of Notre Dame explained in 2006, SS faces a theoretical minimum of 60 mV/decade at room temperature in conventional MO... » read more

Progress In Flexible Electronics


Flexible electronics have been proposed for a wide variety of applications, from pulse and activity monitoring to electrolyte balance measurements. That makes generalizations difficult, but most proposed devices involve some combination of [getkc id="187" kc_name="sensors"], a power source, onboard data storage and analysis electronics, and some form of communications for configuration and data... » read more

Managing Parasitics For Transistor Performance


The basic equations describing transistor behavior rely on parameters like channel doping, the capacitance of the gate oxide, and the resistance between the source and drain and the channel. And for most of the IC industry's history, these have been sufficient. “Parasitic” or “external” resistances and capacitances from structures outside the transistor have been small enough to discoun... » read more

← Older posts Newer posts →