Author's Latest Posts


Enabling Advanced Devices With Atomic Layer Processes


Atomic layer deposition (ALD) used to be considered too slow to be of practical use in semiconductor manufacturing, but it has emerged as a critical tool for both transistor and interconnect fabrication at the most advanced nodes. ALD can be speeded up somewhat, but the real shift is the rising value of precise composition and thickness control at the most advanced nodes, which makes the ext... » read more

Powering CFETs From The Backside


The first CMOS circuits to incorporate backside power connections are likely to be based on stacked nanosheet transistors, but further down the road, planners envision complementary transistors (CFETs) that vertically integrate stacked NFET and PFET devices. With at least twice the thickness of a nanosheet transistor, connecting CFETs to each other and to the rest of the circuit is likely to... » read more

Building CFETs With Monolithic And Sequential 3D


Successive versions of vertical transistors are emerging as the likely successor to finFETs, combining lower leakage with significant area reduction. A stacked nanosheet transistor, introduced at N3, uses multiple channel layers to maintain the overall channel length and necessary drive current while continuing to reduce the standard cell footprint. The follow-on technology, the CFET, pushes... » read more

3D Integration Supports CIM Versatility And Accuracy


Compute-in-memory (CIM) is gaining attention due to its efficiency in limiting the movement of massive volumes of data, but it's not perfect. CIM modules can help reduce the cost of computation for AI workloads, and they can learn from the highly efficient approaches taken by biological brains. When it comes to versatility, scalability, and accuracy, however, significant tradeoffs are requir... » read more

Modeling Compute In Memory With Biological Efficiency


The growing popularity of generative AI, which uses natural language to help users make sense of unstructured data, is forcing sweeping changes in how compute resources are designed and deployed. In a panel discussion on artificial intelligence at last week’s IEEE Electron Device Meeting, IBM’s Nicole Saulnier described it as a major breakthrough that should allow AI tools to assist huma... » read more

Increasing AI Energy Efficiency With Compute In Memory


Skyrocketing AI compute workloads and fixed power budgets are forcing chip and system architects to take a much harder look at compute in memory (CIM), which until recently was considered little more than a science project. CIM solves two problems. First, it takes more energy to move data back and forth between memory and processor than to actually process it. And second, there is so much da... » read more

Ferroelectric Memories Answer Call For Non-Volatile Alternatives


As system designers seek to manipulate larger data sets while reducing power consumption, ferroelectric memory may be part of the solution. It offers an intermediate step between the speed of DRAM and the stability of flash memory. Changing the polarization of ferroelectric domains is extremely fast, and the polarization remains stable without power for years, if not decades. FeFETs, one of ... » read more

Is Maskless Lithography Coming Into Its Own?


Lithographers have always faced tradeoffs between speed and flexibility. Steppers are very good at printing hundreds or thousands of identical features onto hundreds or thousands of wafers. They are not especially good at handling surfaces with significant topography, though. Nor is customization feasible. Every exposure uses the same reticle. Direct write e-beam lithography has long been us... » read more

3D In-Memory Compute Making Progress


Indium compounds are showing great promise for 3D in-memory compute and RF integration, but more work is needed. Researchers continue to make headway into 3D device integration particularly with indium tin oxide (ITO), which is widely used in display manufacturing. Recent work indicates that different compounds of indium oxide doped with tin, gallium, or zinc combinations may boost transisto... » read more

Using ML For Improved Fab Scheduling


Expanding fab capacity is slow and expensive even under ideal circumstances. It has been still more difficult in recent years, as pandemic-related shortages have strained equipment supply chains. When integrated circuit demand rises faster than expansions can fill the gap, fabs try to find “hidden” capacity through improved operations. They hope that more efficient workflows will allow e... » read more

← Older posts