Author's Latest Posts


Integrating Ethernet, PCIe, And UCIe For Enhanced Bandwidth And Scalability For AI/HPC Chips


By Madhumita Sanyal and Aparna Tarde Multi-die architectures are becoming a pivotal solution for boosting performance, scalability, and adaptability in contemporary data centers. By breaking down traditional monolithic designs into smaller, either heterogeneous or homogeneous dies (also known as chiplets), engineers can fine-tune each component for specific functions, resulting in notable im... » read more

Evolution Of Equalization Techniques In High-Speed SerDes For Extended Reaches


The relentless demand for massive amounts of data is accelerating the pace of high-performance computing (HPC) within the high-speed Ethernet realm. This escalation, in turn, intensified the complexity associated with designing networking SoCs, including switches, NICs, retimers, and pluggable modules. Such growth is accelerating the demand for bandwidth hungry applications to transition from 4... » read more

Benefits Of A Silicon-Proven 800G Ethernet Solution For High-Performance Computing


The evolution of high-speed Ethernet began in 2014 when Arista, Broadcom, Microsoft, Mellanox and Google formed the Ethernet Consortium, now called the “Ethernet Technology Consortium.” Since then, the technology has been adopted by more than 45 members. The push for 200G, then 400G, and now 800G Ethernet is driven by the insatiable need to process and transmit high-performance workloads in... » read more

Meeting 112 SerDes Based System Design Challenges


The need for higher bandwidth networking equipment as well as connectivity in the cloud and hyperscale data centers is driving the switch technology transition from 25Tb/s (terabytes) to 51Tb/s and soon to 100Tb/s. The industry has chosen Ethernet to drive the switch market, using 112G SerDes or PHY technology today and 224G SerDes in the future. This article describes how designers can overcom... » read more