Author's Latest Posts


Baby Steps Toward 3D DRAM


Flash memory has made incredible capacity strides thanks to monolithic 3D processing enabled by the stacking of more than 200 layers, which is on its way to 1.000 layers in future generations.[1] But the equally important DRAM has achieved a similar manufacturable 3D architecture. The need for a sufficiently large means of storing charge — such as a capacitor — has proved elusive. Severa... » read more

Is In-Memory Compute Still Alive?


In-memory computing (IMC) has had a rough go, with the most visible attempt at commercialization falling short. And while some companies have pivoted to digital and others have outright abandoned the technology, developers are still trying to make analog IMC a success. There is disagreement regarding the benefits of IMC (also called compute-in-memory, or CIM). Some say it’s all about reduc... » read more

NAND Flash Targets 1,000 Layers


The chip industry is pushing to quadruple the stack height of 3D NAND flash from 200 layers to 800 layers or more over the next few years, using the additional capacity will help to feed the unending need for more memory of all types. Those additional layers will add new reliability issues a number of incremental reliability challenges, but the NAND flash industry has been steadily increasin... » read more

New AI Data Types Emerge


AI is all about data, and the representation of the data matters strongly. But after focusing primarily on 8-bit integers and 32‑bit floating-point numbers, the industry is now looking at new formats. There is no single best type for every situation, because the choice depends on the type of AI model, whether accuracy, performance, or power is prioritized, and where the computing happens, ... » read more

Batteries Look Beyond Lithium


Lithium batteries dominate today’s rechargeable battery market, and while they have been wildly successful, challenges with lithium have spurred research into alternative chemistries that can improve on some of lithium’s downsides and still keep as many of the upsides as possible. So far, none of the alternative batteries has seen commercial success, but several variants have moved beyon... » read more

New Approaches To Power Decoupling


Decoupling capacitors have long been an important aspect of maintaining a clean power source for integrated circuits, but with noise caused by rising clock frequencies, multiple power domains, and various types of advanced packaging, new approaches are needed. Power is a much more important factor than it used to be, especially in the era of AI. “Doing an AI search consumes 10X the power t... » read more

New Materials Are in High Demand


Materials suppliers are responding to the intense pressures to improve power, performance, scaling, and cost issues, which follows a long timeline from synthesis to development and high volume manufacturing in fabs. The advances in machine learning help present a wide field of candidates, which engineers then narrow to potential use. When building standard logic semiconductor chips, the prim... » read more

The Challenges Of Upgrading Lithium Batteries


The ongoing electrification of everyday items has resulted in the proliferation of batteries, and spurred continued development for automotive and grid use. Lithium-ion batteries still dominate the rechargeable-battery landscape, with solid-state versions prolonging that position, but other lithium variants aim for greater safety while raising energy capacity. Battery researchers must balanc... » read more

Why Small Fab And Assembly Houses Are Thriving


High-volume products get more than their fair share of attention in the semiconductor world, but most chips don't fit into that category. While a few huge fabs and offshore assembly and test (OSAT) houses process enormous volumes of chips, small fabs and packaging lines serve for lower volumes, specialized technology, and prototyping. “There are companies that run literally one lot of 25 w... » read more

CPU Performance Bottlenecks Limit Parallel Processing Speedups


Multi-core processors theoretically can run many threads of code in parallel, but some categories of operation currently bog down attempts to raise overall performance by parallelizing computing. Is it time to have accelerators for running highly parallel code? Standard processors have many CPUs, so it follows that cache coherency and synchronization can involve thousands of cycles of low-le... » read more

← Older posts